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Localization of eigenfunctions in the stadium billiard
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We present a systematic survey of scarring and symmetry effects in the stadium billiard. The localization of
individual eigenfunctions in Husimi phase space is studied first, and it is demonstrated that on average there is
more localization than can be accounted for by random-matrix theory, even after removal of bouncing-ball
states and visible scars. A major point of the paper is that symmetry considerations, including parity and
time-reversal symmetries, enter to influence the total amount of localization. The properties of the local density
of states are also investigated, as a function of phase space location. Aside from the bouncing-ball region of
phase space, excess localization is found on short periodic orbits and along certain symmetry-related lines; the
origin of all these sources of localization is discussed quantitatively and comparison is made with analytical
predictions. Scarring is observed to be present in all the energy ranges considered. In light of our results, the
excess localization in individual eigenstates is interpreted as being primarily due to symmetry effects.
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[. INTRODUCTION time maps, and it would be desirable to study scarring quan-
titatively in the context of more realistic and experimentally
According to scar theory, the quantum eigenfunctions of aealizable systems, such as the stadiunimovich bil-
classically chaotic dynamical system do not always look lodiard. In what follows we present a systematic study of eigen-
cally like random superpositions of plane waves with fixedstate localization in the stadium billiarsee Ref.[9] for
energy, as predicted by Berfg]; instead, many eigenfunc- SOmMe other recent qnalyses of this syQtdeec. II, we first
tions display a concentration of amplitude around short unPresent the numerical method used to find the eigenstates.
stable periodic orbits greater than that expected on the basia€": in Sec. lll, we study the localization properties of in-
of random matrix theory fluctuations. The first examples ofdividual eigenstates, followed by an investigation in Sec. IV
scars in the stadium billiard were presented by Hel& of th_e Ioca_llzatlon proper_tles of the_loc_al density of states_.
who also gave a semiclassical theory of scarring based of/€ find evidence of scarring as a ubiquitous phenomenon, in
dynamics in the linearizable region around the periodic orbi@!l the energy ranges considered. We examine quantitative
(see also unpublished numerical work by McDongB). predictions of scarring strengt_hs .based on the classical struc-
Recent developmenfg] have extended the theory of scars turé around the unstable periodic orbjit§. However, scar

to the nonlinearizable regime, to include the effects of hofh€ory is not sufficient to explain all the observed localiza-
moclinic recurrences at long times. Scarring is then seen t§0on- Symmetry effects, including the imprints of both time-

be a weak localization phenomenon coming from the shortl€versal and parity symmetries, are ultimately found to domi-
time correlations associated with an unstable periodic orbit'ate the excess wave function localization in the stadium.
in the energy domain, this means that a wave packet centered
on the orbit may have nonrandom overlaps with the eigen-
states of the system. Quantitative measures of scar strength
have been developed and tested numeriddl)§|. We study eigenstates of the time-independent Sthger
In this paper we ask whether the localization caused byquation in an infinite two-dimensional potential well having
scarring on not-too-unstabl@e., shor} periodic orbits, and the shape of a stadium, taken here to consist of a square of
by atypical regions such as the “bouncing bal[6-8]  side 2 with semicircular endcaps of radius 1. We use the
modes is adequate to predict measures of localization iplane wave methodl10] to find states of even parity with
eigenstates of chaotic systems. Quantitative numerical comespect to reflection about each of the two symmetry axes of
firmation of scar theory4,5] has been limited to discrete- the stadium. Since the eigenvalues are not knewriori,
we search for them using the “tension” method: at each
energyE we solve the linear system for the coefficients of
*Electronic address: bies@blizzard.harvard.edu. the plane waves by singular-value decomposition, and then

II. METHOD
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<k. Then the classical billiard dynamics is reduced to a non-

Coordinate space Husimi space .
P P linear one-bounce mapg(,p’)=Mg(q,p).
S A TN T A natural way of reducing the quantum problem from two
P, " e, AN to one dimension is to characterize the Dirichlet eigenfunc-
L) I} ) -
a) M et SraNt Il Yy tions ¥, (x,y), which are defined on the interior of the sta-
@ %ire 0D OLD n(X,y
R TO AL T = dium, by their normal derivativeg,(q) on the boundary:
- Tanh ‘ean 7Ty - n
e ee LT A se/a""
S LT e Tea?”

(alny=gn(q)=n- VW (x,y). @

We will study the properties of thesairface wave functions
The wave functions are normalized according to the conven-

(b) tion

f fdxdy|«1fn(x,y)|2=1, 2

which is equivalen{13] to the following condition on the
surface wave functions:

c 1 )
? ng da[n(a)-r(a)]|¢n(a)]*=1, &)

wheren(q) is the unit normal at the positioq along the
boundary, and(q) is the displacement vector from the cen-
ter of the stadium to the positicp

The Husimi representation of a surface wave function

FIG. 1. Representative eigenfunctions of the stadium billiard in
coordinate spacéeft) with x axis running from 0 to 4 ang axis
running from —1 to 1, and in Husimi phase spa¢eght) with L . L >
distanceq along the perimetethorizontal axi$ running clockwise is given by its projectior)(do, Po|n)|* onto test state Gaus-
from O (corresponding to the center of the upper straight seg)mentS'anS of the form
to 4+ 27 and tangential momenturfvertical axig running from 1 (q_qo)z
—k to k, wherek is the wave number of the eigenfunction. In the <Q|QOap0>: — ¢ ;{_ —————+ipo(q—0ao) |-

: . 1/2,_1/4 2
coordinate space plots, the gray level represpfits In the Husimi oo 20
phase-space plots, white is high intensity and black low intensity. 4
(a) k=24.680,(b) k=100.787, andc) k=105.608, chosen to illus-

trate scarring along the bowtie and diamond orkifs Table II). The test Gaussian is centered at the poiy, o) in the

boundary phase space. The parameterontrols the aspect

) 2 ) ratio of the Gaussian: its width in position ég 2 while its
compute the integral ofy|* along the boundary. IEis an 0 cntum width is 1+2). To maintain a given asPect
eigenvalue the integral should Vanish, to within numericalratio of the Gaussian in phase Spamust scale akflz_
precision. In practice one finds sharp minima in the tensiorHere, we chooser=[(2+ 7)/k]"2, which makes the aspect
as a function ok=\E, which are identified with the eigen- ratio unity in units where the full phase space on the billiard
values. Using about eight points per wavelength along th&oundary is taken to be a square. Note that the wave func-
boundary, we could reliably locate all eigenstates up to abouions are real in coordinate space but complex in phase
k=300. Thus, we did not need the improvements to thespace. Some example Husimi plots are given in Fig. 1.
plane-wave method developed by Li and Hul] and

Vergini and Saracenfil2], although the methods described Ill. IPR STATISTICS FOR INDIVIDUAL EIGENSTATES

g}tI?ese papers would be required to go to still higher values We start by investigating the localization properties of

Lists of eigenstates of the even-even symmetry class ind'Y'dual eigenstates. As a measure of the degree of local-
ization of the eigenstates in phase space, we use the mean

the three energy ranges kf20 to 30,k=100 to 150, and ) . .
k=200 to 225 were generated according to the method ouéqugrgd yalue .Of the intensity, also known as the inverse
participation ratio(IPR)

lined above. Some examples are given in Fig. 1 of eigen*
functions¥,(x,y) in coordinate space. J

<1/J>j§1 [{aj .p;In)|*
In= 5- ®)

J
(1/J)J§l [(aj,p;[n)|?

Surface wave functions

Classically, one typically uses the boundary of the billiard
as a Poincarsurface of section. The variables parametrizing
the surface arg, the arclength along the boundary, and its
conjugate momentum, which is the component of momen- Hereq; andp; range over the entire phase spacg aaries
tum parallel to the wall(both positive in the clockwise on a sufficiently fine grid; the finenessmust scale at least
sensg ¢ is taken modulo the length=4+ 2 of the perim-  linearly with the wave vectok. The range of momentp;
eter, whilep is limited by energy considerations tok<p covered is from—k to +k for a wave function with energy
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k?; outside this classically allowed region there is almost no TABLE I. Averages of the inverse participation ratios for the
wave function amplitude. The IPR, measures how much first 100 states in the three energy ranges startikg=&0, 100, and
fluctuation across phase space there is innfeeigenfunc-  200. Columns(a) thek value at the beginning of the rande) the
tion. If |<qj ,pj|n>|2 were completely uniform over phase actual IPR;(C) the estimated fract!on of phase space occgpled by
space,Z,=1. On the other hand, if all the intensity were the bouncing-bal(BB) states in this range df; (d) the predicted

concentrated entirely at one pojnand was zero elsewhere, PR when the bouncing-ball region is excluded) the average
7. would reach its maximal valud. [Of course, the uncer- actual IPR after the bouncing-ball states are omitted. Standard de-
n " 1

- I . viations are shown in parentheses. The large remaining discrepancy
talnty'prlnCIpIe preventd, fro'm evgr becoming greater tha.m between(d) and(e) is mostly due to symmetry effects, as explained
the size of phase space in units of a Planck cell, i.e.

. . In the text.
O(kL/27).] Random-matrix theoryRMT) predicts a Porter- n fhe fex
Thomas distribution of wave function intensities, yielding @ (b) © (d) ©
7,=2 (for complex wave functions already larger than the K IPR BB fraction IPR without BB IPR without

naive classical expectation of 1.

: . . . . numerical of phase space RMT prediction BB numerical
A subtle point is that the wave function intensity P P P

[{g;,p;|n)|?, even when averaged over wave functigny, 20 3.67(3.53 13% 2.44 2.710.62
is not uniform over the boundary phase space, being insteatho 3.60(3.33 5.8% 2.29 2.700.65
a non-trivial function ofp; . The mean wave function inten- 200 3.08(1.99 4.1% 2.25 2.820.80

sity can be determined from classical phase space argument
similar to those used in the derivation of Weyl's law. It de-
pends orp for two reasons(1) normal derivatives introduce The average IPRs for the first 100 states in each energy
a contribution ofp, =k\1— (p/k)? multiplying the coeffi- regime are summarized in Table I.

cients of the plane wavdsince the coefficients are squared, The IPRs cluster around 3, with some much larger. The
the resulting factor in the mean intensityk&(1— (p/k)?)], mean IPR is 3.67, 3.60, and 3.08 in the low-, medium-, and
and(2) there is a geometrical factor coming from the projec-high-energy ranges, respectively, but with large standard de-
tion from the circlek? + p2=k? onto the boundary of the Vviations. Visual examination of the Husimi plots for states
stadium. Because the plane waves are evenly distributedith the largest IPRs reveals that they correspond to

around the circle, there are more nmﬁk than nearp:(); bouncing-ball states. Since this phenomenon is well under-
the resulting geometrical factor if1—(p/k)?] Y2 To-  stood(and is associated with marginally stable periodic or-

gether, Eqs(1) and(2) give bits), we remove this effect by eliminating the bouncing-ball
states from the averageee columr(e) of Table I].
({a,p|n)|?)y~ V1—(p/k)?. (6) The remaining states avoid the bouncing-ball region,

causing their IPR to be increased by an amount that can be
Therefore, even in the absence of quantum fluctuations, if thestimated. Ak~ 20, the bouncing-ball region occupies about
intensities for a wave functiojn) were given simply by the 13% of phase space. Assuming the non-bouncing-ball states
mean value|(q; ,pj|n)|2=\/1—(pj/k)2 as in Eq.(6), we tovanish identically in that region, the random-matrix theory
would obtain an IPRZ, of prediction for the average IPR without the bouncing-ball
states becomes 2.X¥6..13=2.44. The size of the bouncing-
32 ball region in phase space is energy-dependamd must of
(1= (pIO?I(NL= (plk)%)?= 3,2~ 108076, (7)) ourse go to zero in the—os limit, in order to satisfy the
Shnirelman quantum ergodicity conditionAs found by
independent ofk. The averageg---) here are of course Tanner[7], the number of bouncing-ball states behaves as-
taken over the classically allowed rangepf—k<p<k. If  ymptotically asNgg(E)=0.36E%* and thus the density of
the intensity fluctuations around the smooth valuebouncing-ball states, which is proportional to the area occu-
J1—(p/k)Z were instead given by a Porter-Thomas distribu-pied by them in phase space, scale€as™ or k=2 This
tion, we would obtairZ,,=1.08x 2= 2.16 (since the smooth scaling law, as well as the numerical prefactor, are in agree-
behavior and the Porter-Thomas fluctuations are independentent with our numerical result§We note that Beker et al.
of one another, the IPR contributions simply multiply [6] find the same scaling law but a somewhat smaller pref-
We checked the mean wave-function intensity for theactor when counting the bouncing-ball states. As explained
computed even-even states in the interval frem100 to  in Ref.[6] part of the difference may be explained by the fact
110. It agrees well with Eq(6), except atp=0 around the that Bakeret al. do not count some states that live near the
centers of the straight segments and the centers of the enbdoundary of the bouncing-ball region. We are being conser-
caps, where sharp peaks are seen. The peaks occur becavgtive by eliminating all such states from our analysis; oth-
only even-even states have been included in the analysisfwise the observed discrepancy between calculated IPRs
since the odd states must vanish at the symmetry points, tfgnd RMT predictions would be even largeThe adjusted
even-even states compensate by having double the averaBMT predictions are shown in columd) of Table I.
intensity there. Apart from this, the agreement of the com- As seen in Table I, the average IPRs with bouncing-ball
puted mean intensity with Eq6) indicates that we have States removed are still well above the random-matrix pre-
included enough eigenfunctions in our analysis for each endiction in each energy range. The statistical uncertainty in
ergy range. the average IPR is about\i¥00~0.1 of the standard devia-
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tion, or roughly 0.1, which is comparable to the differences
in average IPR between different energy ranges. We do not
see any trend toward the RMT predictionskasicreases by

a factor of 10.

Thus, we have uncovered systematic evidence of localiza-
tion of eigenfunctions in the stadium billiard beyond what
would be predicted on the basis of random-matrix theory.
What is responsible for it? The next highest IPRs, after the
bouncing-ball states, are for eigenfunctions visibly scarred
along the periodic orbit that bounces horizontally between
the centers of the endcaps. Thus, one might hypothesize that
scarring along this and other periodic orbits is partly respon-
sible for the excess localization. In the next section, how-
ever, we shall introduce a method that allows the excess
localization to be identified with specific classical structures
in phase space, and techniques to predict the amount of lo-
calization theoretically. We shall find that quantum symme-
try effects cause most of the excess localization, while a
secondary effect consists of combined scarring contributions
from all of the short unstable periodic orbits.

IV. SPECTRAL LOCALIZATION
A. Introduction

The IPRs of individual eigenstates establish that there is
indeed localization compared with the predictions of
random-matrix theory. However, it does not permit the local-
ization to be identified with specific structures in classical
phase space because the IPR is an aggregate over all of phase
space. But it is also possible to ask a complementary ques-
tion, namely, how ergodic are the eigenstates at a given point
in phase space as one varies the energy? To answer this
guestion, we turn to théocal IPR—a tool that provides a
picture of the regions of phase space that are prone to inten-
sity enhancement or depletion as one sweeps through an en-
semble of eigenstates.

1. Definition

The local IPR(LIPR) L is the mean squared eigenstate
intensity at point ¢,p), averaged over a set of eigenstates

[14]: FIG. 2. LIPR[see EQ.(8)] in phase space as a function of

running horizontally from O to 427 and p/k running vertically
from —1 to 1. The test-state width- is chosen so that the test
Gaussians have circular cross-sections when the figures are plotted

N
i E |< |n)|4 with a square aspect ratio. Darker shading indicates higher values.
N & 114P (@) k=50 to 60,(b) k=100 to 150, andc) k=200 to 225.
E(qvp): 1 N 27 (8)
(N nZl |<q,p|n>|2> 2. Intuitive description

The LIPR at the pointd,p) is a statistical property of the
set of ‘random’ variable$(qg,p|n):n=1---N}. The second

where N is the number of eigenstates being summed overmoment of this quantitywhich appears in the denominator
Typically the sum is taken over eigenstates in a small energgf Eq. (8)] is a smooth function off andp, as was shown in
range around some central value lofThe Gaussian wave Sec. lll. The lowest nontrivial moment is the fourth moment,
packets|q,p) are adjusted to maintain constant aspect ratiovhich appears in the numerator of E§). The LIPR, then,
in phase space ds changegsee discussion following Eq. measures the nonuniformity of the local density of states at a
(4)]; this keeps the classical dynamics fixed as the energyfixed) position in phase space.
increases. The denominator in E&) depends analytically We expect the LIPRZ(q,p) to be a sensitive indicator of
onpas in Eq.6). Several LIPR pictures are shown in Fig. 2. the presence of scarring, because a wave packet centered on
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a periodic orbit has a local density of states that oscillates 1 = T T z
with energy[2]. Eigenstates in the peak of the oscillation / \ 4 2 /
will, on average, have enhanced overlaps with the test state ANV AN AN
while eigenstates in the trough will have suppressed over- 05 / A A NS ON
laps. This nonuniformity will cause the LIPR to have peaks FAY AN
near periodic orbits. / ! \

There is a useful interpretation of the LIPR—it is propor- = T
tional to the long-time average of the probability that the L A N A W U
wave packetq,p), evolved in time, will return to its original o5k Y R A ANV
location. A derivation and discussion of this interpretation L4
are presented in Sec. IV E below. N/

Since the stadium is strongly chaotic, classical trajectories l
explore all of phase spad¢except for a set of measure zgro 0 2 4 6 8 10
Therefore the classical return probability for long times is a

uniform, and the resulting naive classical prediction is that o .
9 P FIG. 3. Principal symmetry-related structures in phase space of

£=1. This is indeed too naive. the local inverse-participation ratio plotted in Fig. 2 and the average
Instead, the correct ‘null hypothesis’ for a chaotic system P P P g 9

. - . . . return probability plotted in Fig. 7. All symmetry lines are depicted
s that its elgenfunptlons are random Superposm_ons of Plangchematically, labeled in the order in which they are described in
waves[1]. Under this maximally random assumption, Projec- e text.

tions of wave functions on test states should follow%

distribution with one degree of freedofif the eigenfunc-
tions and test functions are rg¢alr with two degrees of free-
dom (if they are complex The corresponding predicted
LIPRs are£L=3 or 2, respectively—already different from
the naive classical prediction.

-

cally in Fig. 3. The streak labelgd) in Fig. 3 corresponds to
trajectories emerging from the center of the endcap. The
streak labeled?2) corresponds to a family of orbits emerging
from the center of the straight segment. Stréak which
starts at small parallel momentum at the edge of the
bouncing-ball region and extends to large momentum at the
) center of the endcap, corresponds to orbits that have a verti-
~In Fig. 2 we present the LIPR computed for even-evenca| segment in the endcap region. The box and the bowtie are
eigenstates in the wave number ranges50 to 60, 100 t0  the two most prominent periodic orbits in this family. The
150, and 200 to 225. They display interesting and beautifuktreak labeled4) starts at small momentum at the center of
localization effects. the straight segment, curves up to larger momentum, and
The horizontal axis of each picturedsthe position along  finally comes back down to zero momentum at the center of
the boundary, which runs from 0 ta q=0 corresponds to the endcap. It corresponds to orbits that pass through the
the mldeInt of one of the Straight walls. The vertical axis iSCenter of the stadium. The most prominent periodic orbit in
the component of momentum parallel to the boundafly,  this family is the Z orbit. Finally, there is the horizontal line
which runs from—1 to 1. The eightfold symmetry of these (5) going across the plot at zero momentum, corresponding
plots results from the two spatial reflection operations plugo normal incidence on the billiard boundary. All of these
time-reversal symmetry. The LIPRs consistently show a verfamilies can be understood by considering time reversal and

large enhancement in the bouncing-ball region, explainabl@arity symmetry effects in combination with dynamics, as
by the bouncing-ball and near-bouncing-ball states present iye will now see.

the energy ranges considered. But in addition, there is local-
ization in many other regions of phase space. There are very 1. Simple explanation

prominent straight lines of enhanced LIPR running along the The intuitive reason for the symmetry lines is that the

lines of symmetry, and filamentary streaks running acrosgy siem, having time-reversal symmetry, has real eigenfunc-
oth_er parts of phase space. There are also isolated spotst%tn& However, the Gaussian test stdig. (4)] are intrin-
which the LIPR is unusually large. . sically complex. Therefore the overlép,p|n) has both real

Note that, although the details vary somewhat, the ma'%nd imaginary parts that, for most choicesjaindp, are not

localization features appear in the same positions in eacf). : .
energy range. This Iacﬁ)(pdf dependence sfggests that the ivially related to one anoth.er. Therefore t.he_ typical com-
lines, streaks, and bright spots are all associated with semﬁ)-.lJtecj LIPR for the system is 2, characteristic of complex

classical phenomena. Our main goal is to give a quantitative'genfumtions' But in a sense the “correct” value=3
explanation for all of these effects. We would also like to?(:har&1CterIStIC of real eigenfunctignis obscured by a non-

understand the relative contributions of each semiclassic |ﬂeal choice of test states whose properties do not match

. ose of the eigenstates.
Zggsgto the total average IPR enhancement found in Sec. Il However, due to the symmetry of the system, there are

certain values ofy and p for which the real and imaginary
parts of(q,p|n) are not random and independent. For ex-
ample, whenp=0 (normal incidence to the wallthe test
What is the explanation for the streaks in the LIPR plotsstates and their projections},p=0|n) on the eigenstates
of Fig. 2? The most prominent streaks are shown schematbecome pure real and therefore npar0 the LIPR increases

B. Introduction to pictures

C. Symmetry lines
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to 3.[This explains the symmetry line label€s) in Fig. 3]  If u. andv. had the same variances and were uncorrelated,
Similarly, the eigenfunctions are symmetric about the centerghe LIPR would uniformly equal 2, like that of any Gaussian
of the straight walls, and therefog=0,p|n) is pure real random process with two degrees of freedom. This null re-
and again the LIPR increases to(Similarly for the centers sult would hold even if the variance dependedmand g,
of the endcap$.This simple argument explains the straight because the square of the variance appears both in the nu-
symmetry lines(1), (2), and (5) that appear in the LIPR merator and in the denominator of the definition of the LIPR.
pictures. A rigorous derivation of their heights and widths However, in reality the symmetries cause the variances of
will be given in the next section. the real and imaginary parts. andv-. to depend differently

It is interesting to note that the same LIPR enhancementsn phase space location. The effective number of degrees of
would be present if we had used eigenstates of other synfreedom varies from twéwhen(u?)=(»?)) to one(when

metry classes, or put eigenstates of all symmetry classes t@ﬂiﬁo, <,,2+>:o), and correspondingly the LIPR varies
gether. For example, for odd-odd eigenstates, the eigenfungom 2 t0 3.

tions are antisymmetric about the centers of the straight | terms of the three quantitidg2), (»2), and( ..

walls, and thereforéq=0,p|n) is pure imaginary, again giv- - - -

ing a x? distribution with one degree of freedom, and the <|M++iV+|2>=(M§>+(V2+>, (11)

enhancement = 3. - - - -
A natural approach to desymmetrization would be to sym- hile (| +iv.|% can be expanded and then contracted

metrize the test wave packets with respect to time reverse\gairwise éiving_

symmetry, by taking their real or imaginary parts. We find, '

however, that such a simple procedure fails to eliminate all

symmetry effects on the LIPRand thus, also on the IBR

Vi>,

(Juetive | =2((ui) +(»2)2+ (ud) —(v2))?

+4{pava)2 (12
2. Derivation

In this section we show how to compute the enhancemen-{he _F’mb'ef‘? has been reduce_d to_the computation of the
of the LIPR that appears near the symmetry lines of théeqwr_ed varlancEs and correlations in Efg).
system. We do this in order to verify the conclusions of the U_S|ng<q,p|n> =(a,~pln) andR[q,p)=[~q,~p), we
preceding simple arguments, and also to deduce importaﬁ’tbta'n
details such as the profiles and widths of the symmetry lines.

The derivation relies on the fact that the eigenfunctions 1 . .
are chosen to be redin a coordinate basiswhich can be Mi—ﬁ[<q,p|n>+(q,—pln)_<—q,—p|n)_<—q,p|n>]
done as a consequence of time-reversal symmetry. We de-
note time-reversal withl, an antiunitary operator. On the
surface of sectionT|q,p)=|q,—p).

Furthermore, the eigenfunctions are symmetric or anti-
symmetric with respect to the reflections» —x andy—
—vy, which we will denote by the unitary operatoRs and F(—a,plm]. (13
R, respectively. For simplicity in the following derivation )
we will consider the simpler case of a single reflection sym-Because{n) represents not a wave function but rather the
metry R aboutq=0. projection of a wave function onto the surface of section, the

It is not correct to model the eigenfunctions as uncorre-£losure relationship does not hold;|n)(n|#1. But as ex-
lated Gaussian random variables, because their reflectigiained above in Sec. IVA1, it is still approximately true
symmetry correlates their values at different points. How-that
ever, we can generate random wave functipmst) with
positive (+) or negative () symmetry by taking com-
pletely random real wave functions) (with no symmetry
and projecting them onto the correct symmetry subspace:

1
v:=m[<q,pln>—<q,—pln>i<—q,—pln>

2 In)(n|q,p)~f(p)|a,p), (14)

wheref(p)=f(—p)~1—(p/k)?. It follows that
1

n =g MR O =g S Lapl)+(a, Iy (o, pln)

To substitute into Eq.(8), we will need to compute =(=q,plm](n[a,p)+(nla,—p)=(n|—q,—p)
(q,p|n,=). This quantity is complex, so we decompose it +(n|—q.p)]
into two real random variableg.. andv.. as - q.p/1;

f
L =2(—,F\)l)[<q,p|q,p>+Re<q,plq,—p>
p— i R = ++' + . 10
Gl Pasl = FaplRImIZpetive. (10 +Re(—q,p| ~d,p) *(q,p| ~d, — p)]; (158
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the last line follows from{q,—p|—q,p)={(q,p|—q,—p),  We note that the poinp=q=0, near which the three LIPR
which is real. The other correlations can be worked out simi-definitions given above do not agree, will always be on a

larly; the results are short periodic orbit(e.g., the horizontal bounce orbit of the
stadium billiard, and so the behavior there in any case can-
f(p) not be determined without taking dynamical scar effects into

<V2t>=m[<qup|qvp>_ qu,plq,_ p>: Re(q,p| _Qrp> account(see Sec. IVD 2

+(q,p|—9,—p)] (15b) 4. Curved symmetry lines

f(p) Th_e curved streak) and(4) in Fig. 3 also correspond to
<Miyt>:W[lm<q,p|q,—p>i|m<q,p|—q,p>], classical structures related to the system’s symmetry. Con-
sider first the streak labele@®) in Fig. 3. It corresponds to
(159 trajectories with a vertical segment in the endcap region. In
the desymmetrized quarter stadium, these trajectories are in-
cident normally on they=0 horizontal boundary, and a
At this point we must distinguish between two types of Gaussian test state with zero tangential momentum placed at
LIPR. First, one can evaluate the LIPR by averagiigthe  the point of normal incidenceq(,p=0) would give rise to
numerator and the denominatawver only the even statéas  an enhanced LIPR =3, as for the zero-momentum lir{6)
done in this paperor only the odd states. One then obtains above. Of course, this point of normal incidence exists only
on the boundary of thgquarterbilliard. At other points along

3. Even and odd subsets vs whole set

. B l{a,p|q,— p)=(q,p|—q,p)|? the same orbit, inc_luding points _that a_llso live on the bpund-
L(a,pi{In, =) =2+ " > ary of the full stadium, a Gaussian with momentum aligned
(a.pla.p)=(a,p|—a,—p)) along the trajectory will be close to, but not exactly equal to,

T + RT 2 a time iterate of this zero-momentum Gaussian living on the
=2+|<q,p| [9.p)*{a.p| |q,p)2| ) y=0 boundary. The exact time iterate of this purely real
((a,pla,p)=(a.p|Rla,p)) Gaussian will in general be a Gaussian centered on the other
(16) periodic point @,p) but with a(possibly complexwidth o
somewhat different from that used in our test state. Thus, our
On the other hand, one can instead evaluate the LIPR bigst Gaussian at(p) will have significant overlap with an

averaging over both the even and the odd states. In that cadterate of a purely real state a,p=0) and result in an
enhanced LIPR somewhere between 2 and 3. Very little

L(q,p;{In, +)rufln,—)}) wave packet rotation or stretching occurs during the short
vertical trip between thg=0 line and the endcap; it is for
I{a,pla,— p)|?+{q,p|—q,p)|? this reason that the stre&R) is so strong. Further iterations

- 2 2 of the dynamics will result in additional streaks of enhanced

(@.pla.p)*+(a.p|=a.=p) IPR; these, however, will be much weaker due to the addi-

0l Tla,p)|2+ (a,p|RTlq, p)|2 tional stretching that makes a circular wave packet centered

=2+|<q PITla p>|2 [(a.PIR Tl f>| . (17) at these distant points less closely related to the evolved ver-
(a.pla,p)*+(a.p|Rla,p) sion of the §',p=0) real wave packet. All streaks in the

) ] LIPR plots that have not been explicitly identified in Fig. 3
The required matrix elements can be worked out from Eqmay be explained as further iterates of symmetry lines we

(4): have discussed explicitly. The rather strong strebkasso-
ciated with trajectories going through the center of the sta-
[{a.plq".p")|= ex;{ — (@-q")* _ o?(p—p’)? dium, has a completely analogous explanation.
[} [l - 40-2 4 .
(18 5. Quantitative contribution of the symmetry lines to the IPR

We can now estimate the contribution of the symmetry
The three LIPRs—E(16) for even or odd symmetry and |ines 1o the predicted average IPR. There are 12 strong,

Eq. (17) for both symmetry classes put together—all can be o ghly vertical streakfincluding the curved streak®) and
shown to give results between 2 and 3. In fact, outside th?4)] in the regionp#0 and one horizontal streak at=0.

region neam=p=0 the three results are identical; they all \ye assume temporarily the curved symmetry lines to have a
predict bright symmetry lines near=0 (or near anyq as-  central height near 3 and width of orderjust as for thex

sociated with a parity symmefryf the form =0 symmetry line. Integrating the area under these streaks,
assuming Eq919) and(20) gives a predicted IPR from sym-

£(q,|p|> Lo)=2+e 247 (19 metry effects alone of 2.51in the energy range fronk
=100 to 150). The enhancement of the LIPR in the
and bright symmetry lines ne@=0 of the form whispering-gallery region and in bright spots due to periodic
- orbits gives a contribution only of about 0.03, negligible in
L(|g|>o,p)=2+e 2P, (200  comparison to the symmetry effects. Since the bouncing-ball
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region, which covers about 6% of phase space, is excludedo obvious exact quantum counterpart. HoweWw(k) sat-
from the above analysis, we should increase the predictioisfies enough properties expected of a quantum Poirmage
by 6% to 2.66 for the purpose of comparison with the nu-that we shall use it:

merical value of 2.760.07. In the energy range frork (1) To within a semiclassical approximation it agrees with
=200 to 225 the corresponding predicted IPR is 2.40, othe semiclassical Poincaraap[13] (which is easier to de-
2.51 corrected for the bouncing-ball region, whereas the nufine [15]).

merical value is 2.82 0.08. Thus, it seems that inclusion of  (2) It is approximately unitary within a subspace whose
symmetry and bouncing-ball effects is sufficient to yield adimension is given by the area of the Poincaestion in
guantitative understanding of much of the excess averagenits of Planck’s constant, and exponentially small outside of
IPR in Table I. Interestingly, scarring plays little role in the that subspace.

excess average IPR, but a very important role in understand- (3) If a boundary functionn) corresponds to a wave

ing the phase-space structure. function that satisfies the boundary conditions at wave num-
berk=k,, then|n) is mapped onto itself under the action of
D. Dynamics M(k):
In this section we will consider the LIPR for a system M (kp)|n)=|n). (23

with no time-reversal symmetry, where the wave functions

are complex instead of pure real, and the arguments of Sefydeed, this is the boundary integral method criterion for an
IV.C concerning symmetry lines do not apply. In such agjgenstate.

system the LIPR plot would be far more uniform, and most The following derivation should be considered suggestive
of the remaining structure would consist of isolated regiongather than rigorous. For examplb| (k) is approximately

of enhanced LIPR, against a background&¥2 (corre-  ypitary but it has eigenvalues both inside and outside the unit
sponding to the statistics of the square of a complex Gausgsgcle. This leads to difficulties analytically continuing it to
ian variablg. The streaks would be all gone, including the the region of interest.

vertical parity-line streaks, which also depend on time-  Gjyen properties 2 and 3 above, it is clear that one crude
reversal symmetry for their existence. Thus in this sectionyay to find surface eigenstates of the system would be to

we study the effect of dynamics alone on the LIPR. First weapply M (k) repeatedly to an arbitrary initial stafes) and
give a general theory for computing the LIPR classicallyayerage the results:

anywhere in phase space, and then we show an easier way to

compute the LIPR in the neighborhood of a periodic orbit. In o

the process, we will also see how to treat the case of a peri- [y lim E [M(k,)— e]j|¢>=G(kn)|¢>, (24)
odic orbit that happens to lie on a symmetry line in a time- et 170

reversal invariant system.

where
1. Full dynamics treatment

First we show how to compute the enhancement of the G(k)= lim
LIPR due to the short-time dynamics of the system. Since we
are considering the surface-of-section wave functions, the
classical dynamics that is important is the classical PoincarpS similar to a Green’s function. Since the componenitdf
map M. Howev:_ar, since the effects we are seeking argp ¢ projects ontdn) is unchanged by the action & (ky,),
quantum mechanical, we need to start from the correspondyhereas the other components are multiplied by a complex
ing quantumPoincaremap. For this we use the operator phase, the only component that is not averaged out by the
M (k) that enters into the boundary integral method: above procedure is the projection .

Whenevelk passes through an eigenvakie one of the
eigenvaluese' “n® of M(k) passes along the unit circle
through 1 and>(k) has a singularity. The singular part Gf
can be written schematically as

EH0+1—M(k)+e (25

(@MKI)= $ daKofa,aa]6), (21

where the kernel i§13]

%ReG(k):E [n) 8(k—kn){(n) (26)

ik ~ "[day(K)/dK|

Kex(@,0' )= = 5 H{P(KIr(@)—r(a")])
. The denominator gives the velocity of rotation of thi

xn(q)-[r(q)—r(q")], (22)  eigenphase as it passes through 0. From Weyl's law, one can

obtain an expression for the sum of eigenphase velocities

r(q) is a point on the billiard wall at arclength andn(q) is (€€, €.9.[16]):

the inward-pointing unit normal vector gt DoesM (k) as

defined generate the correct quantum dynamjcs? In a sense 2 da. /dk=kA (27)
that is a philosophical question since the Poincaap has n " '
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whereA is the billiard’s area. Here the sum is over all eigen-Because of theS(k—k,) and (k' —k,,) factors, the Kro-
values of the scattering matrix. Now the dimensionality ofnecker deltas,, may be replaced b€ §(k—k’) whereC is

this matrix iskL/7, whereL is the perimeter of the billiard an undetermined constant with dimensions of momentum.
(the total number of wavelengths along the perimeter isContinuing, then, we have

kL/27, so there is a total dfL/7 modes that can live on the A
perimeter when one includes sines and cogingsus we can ; |<(H)|n>|4:C<E

2
find the average phase velocity: f dkdK Re(q,p|G(k)[q.p)

(kL/m)(day /dk)=KA, (28 X Re(g,p|G(k')[g,pya(k—k") (34)

whence, A\2
:C<E) fdk[Re<q,IOIG(k)Iq,p>]2 (35
(da,/dky=m7AlL. (29

2
For a chaotic system, EqR9) holds not only in an aver- :C(é) j dkS R M (k R M (k
age sense but also holds approximately for individual eigen- L E «a,pIMI(la,p)Rea,p|M” (k)[a.p)

phases. Therefore we take the eigenphase velocity outside of (39
the summation, yielding the useful expression

A\? .
A ~C([) fdkE [Re(q,pIM'(K)[a.p)]*  (37)
EReG(k)~§n: InY8(k—kp)(n|. (30) ]

C[A\? .
Note that the sum is over states of the full system, each with ~ 5( f) f dk>, [(q,p|MI(k)|q,p)|?. (39
its distinct eigenvalud,, . !

It is a simple warm-up exercise to compute the denomiyyhere in going to Eq(37) we use the fact that fgr#j’, the
nator of the LIPR: two phases in the integrand are approximately uncorrelated,
and the integral averages to zero. Equati&®) (in obtaining
> [a,p|n)|?=> (g.p|n)(n|qg,p) which we note that foj # 0 the phase ofq,p|M!(k)|q,p) is
n n a rapidly changing function df, and so may be regarded as
random in the integration; thig=0 term is irrelevant in the
:E <q,p|n>J dkd(k—kq){n|q,p) infinite sum may be interpreted as expressing the propor-
n tionality between the LIPR and the mean quantum return
A probability, averaged oveall times. As a result of the re-
= _f dkRe(q,p|G(K)|q,p) loading effect[4] this mean long-time return probability is
L proportional to the sum of thehort-timerecurrences, which
A may be cut off at the mixing time. The mixing time is de-
= —Re| dk[(q,p|g,p)+{q,p|M(k)|q,p) fined as the time it takes for the classical dynamics to spread
L a giventfi-sized cell throughout the entire phase space. In
+(q,p|MAK)|q.p)+ - - - 1. (31)  order of magnitude it is given by the one-bounce tiffg
times the logarithm of the number of Planck-sized cells in
Now note thatM (k) involves phases that vary rapidly with the classical surface-of-section phase space, iigix
k; therefore only the first term in the brackets survives the~ Tmix/ Tg~ In(kL).
integral overk. We are left with Thus,

ALk C'[A|? Lo |
2 [(a,pIm)[*~——(a.pla.p), 2 2 |<q,pln>l4~7<f) fdk_ 2 [a.pIM(k)[a.p)l>

1=~ Imix
(39
whereAKk is the range ok over which the averaging is done. ) ] ] )
To compute the fourth moment, we proceed as follows: 1he constant of proportionality changes in going from Eqg.
(38) to Eq. (39), as is reflected in our change of notation

fromCto C'.

; |<q,p|n>|4=§n: (a,pIn)(n[a,p){a,p|n)(nla,p) But at times shorter than the mixing time, the quantum
mapM’(k) can be approximated semiclassically in terms of
the classical PoincamapM., (which does not depend do)

:nEm (q,p|n>f dka(k—kn)(n|a,p) times a phase that varies rapidly with

(a,pIMI(K)|a,p)~(a,pIML|a,p)*2exp(ik/}), (40)

><<q,p|m>fdk’5(k’—km)<m|q,p>5nm- . _ -
where|q,p) represents a classical Gaussian probability dis-
(33 tribution centered atq,p) (notationally distinguished from a
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quantum wave function by the round bracketdl), is the ~ Figure 2 confirms the omnipresence of scarring in the
classical Poincérmap iterated times, and/‘j is the length eigenstates of the stadllum billiard, as we now argue. In the
of the corresponding classical trajectory,§|M%|q,p) is general theory of scarring, a wave packet launched on a pe-

the classical overlap of the original distribution with the riodic orbit has a local density of states with a linear or
j-times iterated distribution: short-time envelope(coming from dynamics linearized

around the orbjtthat is an oscillating function of energ].
(a,pIMlq D)Ef dq'dp' Pyi (q or(q'2p" )Py o(d’,p"). The concentration of the local density of states in some en-
' el Mg@.p)iH a.pie ergy regions and avoidance of others leads to an enhanced
(4)  LIPRin Eq.(8). Thus the peaks in the LIPR plot in Fig. 2 at
the positions of short periodic orbits must be attributed to

So finally we have ;
scarring, even though for the most part the scars are too weak

. C'[A 2 Jmix . to be visible in coordinate-space plots of the wave functions,
En: 1{q,p[n)|*~ 2\ Ak__z _ (a,pIMgla,p). such as in Fig. 1. The scars are there in the sense ofyAon-
= dmix (42) variation of phase-space wave function intensity near the pe-

riodic orbits, as one scans through the eigenstates of the sys-
Combining Eq.(32) and Eq.(42) we obtain for the LIPR  tem. For typical scarred wave functions, the scarring will not
be visible in coordinate space, even though the phase space
intensity is greatly enhanced at the periodic points, as one

jmix

N> [(a.p|n)|* C'N __2 (a,p[Mgla,p) can see in the Husimi plots.
o _ 7 mix , In Fig. 4, we see that the distribution of wave function
(E|<q,P|n>|2)2 2Ak (9,p|q,p) intensities on a periodic orbit indeed differs from tiyé
n distribution that would be expected on the basis of random-

(43 matrix theory. In Fig. 4a) we show a histogram of wave
function intensities measured using a Gaussian centered on
where the projections in both the numerator and in the deghe powtie orbit for all states lying betwedn=100 andk
nominator are classical. The const@itcan now be fixed by  —150. Because the bowtie orbit lies on a symmetry line, the
requiring that the LIPR, when evaluated far from any shortandom-matrix-theory prediction is g2 distribution in one
periodic orbits(where scarring plays no roleshould give  gegree of freedontfor the 94% of eigenstates that are not
the RMT value, which we callC(RMT). [As discussed pouncing-ball statésin the presence of scarring, thé dis-
above,L(RMT)=2 in a system with no time-reversal Sym- tihytion must be modulated by the linear spectral envelope
metry; in the presence of time-reversal symmeff{RMT)  corresponding to the periodic orbit, which can be obtained as
reaches the value of 3 on certain symmetry lines. The LIPRhe Fourier transform of the time-domain return amplitude
contribution obtained from short-time dynamics must alwaysor a wave packet initially centered on the orbit. For the
be multiplied by the appropriate factor given by symmetrypowtie orbit, the spectral envelope height varies from 0.4 to
considerations(RMT) is inherently an effect arising from 2 3 with period in energy given by T, whereT = 2.6T; is
Heisenberg-time behavior and so must be considered sepgie period of the bowtie orbit. As a result of this modulation,
rately from short-time contributions to the LIPR. there are many more very small and very large intensities in
Away from short periOdiC orbits there will be no recur- F|g 4(a) than would be expected from the naive Porter-
rences, so only thg=0 term in the above sum contributes. Thomas(RMT) picture. As plotted on a logarithmic scale,
Thus, we obtain the normalization constan€’  the effect is more pronounced for the large intensities, but
=(2Ak/N) £(RMT) and finally also at low intensities we expect an enhancement by about
20%, which indeed is what is indicated by the data below
E (q lej 1a,p) <.|>/'10. The ar_nount of strong scarring observed is also quan-
=5 cliHs titatively consistent with the predicted scarring corrections to
@.pla.p) (44) random-matrix theory: for instance, the number of wave
A function intensities greater than ten times the mean is found
to be 10 numerically, while the scar-corrected prediction is
13+ 3 and the uncorrected random-matrix prediction is only
The dynamical description of the LIPR developed in the3= 3. These predictions were generated using a Monte Carlo
previous section provides a method of computing the LIPRsimulation for peak heights chosen at random with the ap-
classically, anywhere in phase space, by computing overlagzopriate modulation.
of classical Gaussian probability distributions with them- At a generic point in phase space, not lying on a scar or
selves iterated under the classical Poincarap M. We  on a symmetry line, we expecty@ distribution in two de-
found that the LIPR is enhanced when the short-time overlagrees of freedom, and Fig(l) shows the numerical distri-
is large. This of course is most dramatically the case in thdution of wave function intensities at a generic point in
neighborhood of a periodic orbit. In this section we showphase space, in satisfactory agreement with the random-
how to compute the LIPR in the neighborhood of a periodicmatrix-theory prediction for intensities greater tharl }/10
orbit whose stable and unstable manifolds may have arbifwithout scarring corrections, since there is no scarring at a
trary orientation, using only the properties of that one orbit.generic point in phase space, but with 6% of the intensities

T mix

£(q,p)=L(RMT)

2. Periodic orbits, linear theory
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FIG. 4. Probability distribution of wave function intensitigg=|{q,p|n)|? for the 1746 energy levels betweks 100 and 150(a) For
(g,p) situated on the bowtie orbit. Histogram, numerical distribution of wave function intensities; dotted line, scar-corrected prediction of
random-matrix theory with one degree of freedom; solid line, random-matrix prediction, uncorrected for scarring. For purposes of illustra-
tion, the low-intensity part is shown in the figure on the left and the high-intensity tail on the right in a log-logoplBame aga) but for
(g,p) at a generic point in phase space, and the dotted line is now the random-matrix theory prediction for two degrees ofvideziadm
scar corrections, but adjusted for the 6% nearly vanishing intensities due to bouncing-ball states

set to zero, namely, those corresponding to bouncing-ball Due to the reloading effect mentioned in the preceding
states. The bouncing-ball states appear of course in the nusection(see alsd4]) in which returning homoclinic orbits
merical data at intensitiels<(1)/10; the total area between contribute in phase, the mean return probability for long
the data and the curve in this intensity region indeed turngmes at a given periodic orbit, and hence the LIPRvhich
out to be 6%. Note the smaller number of very small andS proportional to the long-time return probability, will be
very large intensities as compared to the scarring case, Figdual toL(RMT) times the short-time enhancement factor
4(a). The two-degrees-of-freedom distribution also falls off "
much faster at large intensities than the one-degree-of- _
freedom prediction appropriate for a symmetry line. ’ S_,—Z’m dadpR(a,p)Po(q.p)

We now turn to the calculation of the heights of the scar- B
ring peaks in Fig. 2 based on a linear expansion around pe- E 2 \/ detA
riodic orbits. Consider the surface-of-section map in [t de(AJr(ij)TAij]'
Birkhoff coordinates; we will be interested in the short-time
linearized dynamics in the vicinity of a periodic orh2].  whereP(q,p) is a classical Gaussian distribution centered
The stable and unstable invariant manifolds, defined as then the periodic orbit and®;(q,p) is the same distribution
locus of points that approach the periodic orbit under infiniteevolved byj bounces. Strictly speaking, the sum in E45)
iteration of the mapping forward or backward in time, re- should extend only over times short compared to the mixing
spectively, will in general have an arbitrary orientation. Wetime; however, this cutoff is irrelevant in the semiclassical
assume that we are far into the semiclassical regime, i.e., thimit kL>1 in which we are working. To show the second
k is large enough so that the Gaussian wave packet is wedlquality, letx=(5q,p) be the phase-space displacement
contained in the phase-space region where the linearizeglative to the periodic orbit ané be the quadratic form
equations of motion are valid. defining the initial Gaussian centered on the orbit,

(45)
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Po(x)=Ce XAX, (46)

with detA=1. We define] to be the Jacobian d¥l at the
periodic orbit; then

Pi(x)=Cexd —x"(J")TAJ Ix] (47)

and the overlap is indeed

(we see that using our normalization the overlap is unity at

time j=0). Thus, the scar prediction of the LIPR peak I3 |
heights at the periodic orbits—which takes into account the
local stable and unstable directions at the periodic orbit, and
not only the stability exponent—ig€ (RMT) multiplied by

the short-time factof.

Using a canonical transformation we may easily see that 7
for any orientation of the manifolds there is an infinite one- /
parameter family of “optimal”’ Gaussian test states, all of
which display maximum possible scarring in accordance
with Eq. (45). Sapproaches unity for long or highly unstable
orbits. =W W

We have calculate® for the periodic orbits appearing in T7
Fig. 5, and compare these theoretical predictions with the
actual peak heights in Fig. 6.

To avoid having to deal explicitly with symmetry effects,
we use the properties of the reduced orbits in the fundamen-
tal domain—one quarter of the stadium. Thus the periods of
the most important orbits, as tabulated in Table Il, range
from 2Tz to 5Ty although their periods in the full stadium W
may be longer. AF increases beyonidl~ 10Tz, many of
the short periodic orbits become incorporated into the streaks l
that dominate the IPR plots.

All quantities appearing in Fig. 6 are either predicted or
actual values ofZ(q,p)/2 at a periodic pointd,p). In other FIG. 5. Principal dynamics-related structures in phase space of
words, we have divided out by the RMT prediction the inverse-participation ratio plotted in Fig. 2 and the average re-
L(RMT)=2, which is relevant for all of phase space awayturn probability plotted in Fig. 7. The labeling is according to Table
from the symmetry lines. However, on the symmetry |inesllllabeling. of scars on .the principal short periodic orbits visible in
the RMT expectation is 3 rather than(8ee Sec. IV § so Fig. 7(e), inan irreducible one-eighth region of phase space. The
the theoretical values d have been multiplied by 3/2 for other_ regions of phasg space are obtained by symmetry. The most
those periodic points that do lie on symmetry lines. In fact,Prominent scarred orbits a, Z, D, B, X, andH.
most of the points do lie on one or another symmetry line.

With the inclusion of symmetry corrections, reasonablevalues in the window. For random and independent fluctua-
agreement is obtained, as can be seen in the scatter plotstiains, the uncertainty coming from this effect scales as the
the predicted versus calculatéd2 peak intensities, Fig. 6; square root of the mean level spacing divided by the size of
as shown in Fig. &), the scatter is markedly worse when the the window. This is why the windows frork=100 to 150

symmetry corrections are omitted. and fromk=200 to 225 were chosen to be as large as pos-

In order to appreciate the significance of these results, weible. A Monte Carlo simulation was done of random wave-
should discuss the factors contributing to the uncertainty iffunction intensities constrained by the “linear” spectral en-
the measured’/2 values plotted in Fig. 6. There are two velope: it suggests that the statistical uncertainty in the
issues: first, there may be a nonintegral number of oscillakIPRs should range from 5% to 8%6lepending on the sta-
tions of the local density of states in the energy windowbility matrix J of the orbit in questionfor periodic points on
considered. The size of this effect scales inversely with thesymmetry lines, and should be slightly smaller for those
number of scar oscillations in the energy window, and ispoints that are not on any symmetry line. This level of fluc-
only a few percent for the data presented in Fig. 6. A seconduation is roughly consistent with the dispersion in the scatter
larger, source of error arises from the finite number of eigenplots of Fig. 6, and does not alter the conclusion tBao-

A

=B
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FIG. 6. Scatter plots of computed peak heights vs the linearized semiclassical prefliatidrthe brute-force semiclassical prediction.
(a) Eigenfunctions ranging frork=100 to 150, symmetry corrections included3n(b) k=200 to 225, symmetry corrections again included
in S (c) k=100 to 150, but symmetry correctiomst included inS. Without symmetry corrections the agreement is much wdadbek
=100 to 150 vs brute-force classical prediction without symmetry correction(e@mith symmetry corrections included.

gether with symmetry factors is a good prediction of theintegrated up to a cutoff time ofTg;, which was chosen to
peak heights. Thus, the symmetry lines emerge as essentia¢ large compared tdg but smaller than the mixing time
to a quantitative understanding of the calculated LIPRs dud ,,~7Tg, after which the returning probability approaches
to scarring. A final consideration supporting the validity of a constant per unit time independent of position in phase
our symmetry analysis is the pattern of peak heights foFthe space. In the semiclassical limit, where strong, identifiable
orbit, on which periodic point§,, F3, andF, have a sym- recurrences at times between the initial decay of the wave
metry correction whilé=, andF5 do not; the predicted peak packet and the Heisenberg time can be neglected, the classi-
heights for the points having symmetry corrections are aboutal simulation converges to the quantum facoiThe clas-
50% percent higher than for the others, and this predictedical simulation reproduces, as it must, one feature of the
pattern is reproduced in the calculated heights. guantum data: the peak heights it predicts agree for points
The brute-force classical calculation, at times large comyfelated by symmetry, namel®, andB,, Z, andZ,, X, and
pared toTg, goes beyond to include the effects of nonlin-  X,, A; andA,, W, andW,, H, andH3, T, andT;, andFg
ear homoclinic recurrences, which add to the predicted peaind F,. In predicting the quantum heights, however, the
height. For each periodic point, the returning probability forbrute-force classical calculation does no better tBaand
an initial Gaussian distribution centered at that point wasnakes predictions that are systematically higfier includ-
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TABLE Il. Principal short periodic orbits appearing in Figs. 2 and 7. The initial coordigait the
distance around the perimeter of the stadium measured clockwise from the center of the upper straight
segment; the initial momentumis positive in the clockwise sense. The lengths and periods are given for the
desymmetrized stadium, which is relevant to our calculations.

Label Description q p/k Length Periodl g
(desymmetrized (desymmetrized
HB Horizontal bounce 2.5708 0 1 2.00
\% V shaped 0 0.70711 2 241
D Diamond 2.5708 0.44721 2 2.24
B Bowtie 1.5236 0.5 2 2.60
Z Z shaped 0.5 —0.44721 3 3.24
X Box 1.7854 0.70711 2 241
A Accordion 0 0.5491 3 3.30
w W-shaped 0 0.31623 4 4.16
H Hexagon 2.5708 -0.86603 3 2.50
T Triangle 0 0.83573 3 4.30
F Fish 2.5708 0.6478 5 5.40
ing symmetry effects In order to investigate the energy de- Sin((E,—E,)T)
pendence of the classically predicted peak heights, the clas- => —— W n)[2[(Wyn") 2. (49)
sical simulation was run both &t=100 and at= 200, the ' (En=En)T
difference being in the size of the Gaussian as a fraction of
the total phase space area. For almost all of the periodith the limit asT tends to infinity,
orbits the results at the two energies agreed to within a few
percent, which is of the same size as the discrepancy be- sin((E,—E,)T)
tween the numerical quantum peak heights in the two energy — = 4(E,—E,)
ranges. This tells us that isolated, identifiable nonlinear re- (En—En)T

currences beyond the initial decay of the wave packet away

from the periodic orbit are not that important for computingand (in the case of a nondegenerate specjrura recover

the mean long-time return probability. Any such nonlinearEd. (8) up to an overall proportionality constant. The arbi-

effects would be strongly dependent on the size in phastrary state]¥,) living in the interior of the stadium may be

space of the initial wave packet, i.e., on the wave nunkber replaced by a Gaussiaq,p) living on the boundary if at the
The classical calculation for the average return probabilitysame time the eigenstatg®,) are replaced by their normal

can be performed anywhere in phase space, not only on thgerivatives on the boundarjn). For T<Tg we should have

short periodic orbits considered in this section; see Segp, (T)~ 1/T; for intermediate times we expect classical be-

IVE 2 below. There we shall see that we obtain pictureshavior as long asf<Tx. The classical behavior will be

similar to Fig. 2, but with more diffuse peaks and the onsetomputed directly below where, based on the time needed

of mixing for T>T . for a simulated classical ensemble to begin to spread evenly

throughout phase space, we fifigi,~7Tg atk=100; that it

is so large may be attributed to intermittency due to

~ Finally, we explain the interpretation of the LIPR as the houncing-ball orbits. Finally fo>T,,, that is beyond the

infinite-time average return probability, as in B49) below  Hejsenberg time where individual eigenstates are resolved

(where it is assumed that the energy window in the SUM$here, T, = 1AE=1/(2kAk) = 1/(2X 100X 0.05)=0.1

overn a_nd n’ is large enough to cover t_he energy scales_ 10T, atk=100], we should find thaP,,(T) tends to the
present in the test stafe)). In order to clarify what is hap- LIPR plot as shown in Fig. 2 aa

pening in the infinite-time limit, it is useful to look first at
finite times, and then let time tend to infinity. Thus we define
the average return probability at tinfefor a wave packet

E. Derivation as return probability

1. Finite-time return probability

|¥,) to be[14] The results for the time-dependent average return prob-
1T ability Pq ).(q.p)(T) a@re given in Fig. 7, for the energy win-
Po(T)= _f dt(W, e YW ,) |2 dow atk=100. We are unable to study numerically the limit
2T) -1 T<Tg because of the finite number of eigenfunctions in-

1T 5 cluded in the sum in Eq49). At T=Tg, however, we see
=1 dat> (W ,[nye Ent(n| W) large amplitudes coming from the bouncing-ball and
2T)-v | a é whispering-gallery regions of phase space, both of which are
short-time classical effects. AT=2Tg the horizontal-
_ i E IT dt|(W |y |2|(W |n/>|267i(En7En1)t bounce orbit appears. By= 3Ty several discrete peaks ap-
2T o ) -7 & é pear, and more of them are presenTat4Tg. These corre-
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FIG. 7. Quantum-mechanical average-return probalfipy(T)
as defined in Eq(49), neark=100; q and p as before.(a) T
=Tg, (b) T=2Tg, (¢c) T=3Tg, (d) T=4Tg, (e) T=5Tg, and(f)
T=10Tg. Note the emergence of periodic orbitsTat 2Tz to T
=3Tg. For T=10Tg the figure is already beginning to resemble
the LIPR plotted in Fig. ).

spond to short periodic orbits of the classical dynamics in the
desymmetrized quarter-stadium billiard. Asbecomes as
large as 9 and then 10y the finite-time average return
probability indeed approaches the infinite-time LIPR. The
nonuniform structure of the infinite-time return probability is
a purely quantum mechanical effect, because according to
classical mechanics the average return probability must be-
come uniform forT>T . FIG. 8. Results of a classical calculation of the return probabil-
Let us work with the data af=4Tg, where the strong ity vs time, q running horizontally from 0 to 4 27 andp vertically
peaks are all present and readily distinguishable from thé&om —1 to 1. Initial Gaussians were chosen witfi=0.05, corre-

backgroundsee Fig. 7d)]. We identify these peaks with the sponding to a spread in position space of 0.2 out ©24r, or 2%
short periodic orbits in Table Il and Fig. 5. of the perimeter. All of the major periodic orbits are present here as

short-time recurrence¢a) T=5Tg, (b) T=10Tg, (c) T=20T5.

2. Classical finite-time return probabili .
catfinitet Hmp ity mechanically, of course, the peaks do not become washed

The persistence to long times of short-time classical inout at long times and instead persist in the infinite-time limit,
formation is a remarkable property of the quantum mechanrig, 2.

ics. Classically, we would expect the recurrences to be
washed out at times large compared to the mixing time. In-
deed, we have computed a classical analog to the time-
dependent average return probability from Hd4). As The advantage of the approach implemented in Sec. IV is
shown in Fig. 8, byl = 10Ty all of the periodic orbits seen in that all of the scars can be observed simultaneously in the
the quantum calculation are present, although the peaks aptot of inverse participation ratio as a function of phase-

more diffuse classically, but by 2@ the classical picture is space location. Although scars are associated with the clas-
beginning to be uniformly distributed throughout phasesical structure of unstable periodic orbits, the persistence to
space, losing memory of the short-time behavior. Quantuntiong times of an excess in the average return probability is a

V. CONCLUSION
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purely quantum mechanical phenomenon. The brightnessemsd (20)], while the length of the symmetry-enhanced lines
of the peaks in the LIPR plot can be predicted semiclassiis # independent. Thus, the total fraction of phase space
cally with some succesdo an accuracy of 10— 15%), the covered by the symmetry lines scales\ds The scar effect,
size of the deviations being roughly consistent with expectean the other hand, is significant for those phase-space Gauss-
statistical fluctuations. More precise comparison with theian wave packets that have large intensity on the periodic
scar theory predictions would require producing a greatlyorbit[17], and the fraction of such Gaussians goes as the area
increased set of eigenstates: this could be done by going 6f the Gaussian; i.e., agh X V% =#%. We note that although
higher energies ofwith far less computational expensgy  the size of both these effects on the overall wave function
using an ensemble of chaotic systems with a given unstablgPR is expected to go to zero in the semiclassical lifbé-
orbit kept fixed[4]. The predictions of brightnesses based oncause periodic orbits and symmetry lines both affect a
exact classical phase-space evolution at the end of Sec. I¥maller and small fraction of phase space surrounding them,
were no more successful than those based on linearized bggrthe—0 limit), the local IPR either on a symmetry line or
havior around the periodic orbit. on a periodic orbit igi independent. Thus, as measured us-
Most of the extra localization of individual eigenfunctions ing the local IPR, deviations from naive RMT predictions
in Husimi phase space, over and above Gaussian randopersist to arbitrarily high energies and do not decay in the
fluctuations, may be satisfactorily accounted for by quantunsemiclassical limit. As for other possible kinds of eigenfunc-
symmetry effects. Scarring is also seen to be present bas@n |ocalization, not associated with the short periodic orbits

on an analysis of the spectra of wave packets located opf the system or with symmetry lines, their explanation re-
short periodic orbits. Symmetry effects on the overall mearmains an open question.

IPR scale a©(#) [i.e.,O(y/1/k)], while the effect of scar-
ring on the overall mean IPR scales@é#) [i.e., O(1/K)].
The reason, for the symmetry effects, is that the widths in
position and momentum of the test-state Gaussian scale as This research was supported by the National Science
o~ 1, setting the width of the symmetry ling&qgs. (19) Foundation under Grant No. CHE-9610501.
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