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Localization of eigenfunctions in the stadium billiard
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We present a systematic survey of scarring and symmetry effects in the stadium billiard. The localization of
individual eigenfunctions in Husimi phase space is studied first, and it is demonstrated that on average there is
more localization than can be accounted for by random-matrix theory, even after removal of bouncing-ball
states and visible scars. A major point of the paper is that symmetry considerations, including parity and
time-reversal symmetries, enter to influence the total amount of localization. The properties of the local density
of states are also investigated, as a function of phase space location. Aside from the bouncing-ball region of
phase space, excess localization is found on short periodic orbits and along certain symmetry-related lines; the
origin of all these sources of localization is discussed quantitatively and comparison is made with analytical
predictions. Scarring is observed to be present in all the energy ranges considered. In light of our results, the
excess localization in individual eigenstates is interpreted as being primarily due to symmetry effects.
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I. INTRODUCTION

According to scar theory, the quantum eigenfunctions o
classically chaotic dynamical system do not always look
cally like random superpositions of plane waves with fix
energy, as predicted by Berry@1#; instead, many eigenfunc
tions display a concentration of amplitude around short
stable periodic orbits greater than that expected on the b
of random matrix theory fluctuations. The first examples
scars in the stadium billiard were presented by Heller@2#,
who also gave a semiclassical theory of scarring based
dynamics in the linearizable region around the periodic o
~see also unpublished numerical work by McDonald@3#!.
Recent developments@4# have extended the theory of sca
to the nonlinearizable regime, to include the effects of h
moclinic recurrences at long times. Scarring is then see
be a weak localization phenomenon coming from the sh
time correlations associated with an unstable periodic or
in the energy domain, this means that a wave packet cent
on the orbit may have nonrandom overlaps with the eig
states of the system. Quantitative measures of scar stre
have been developed and tested numerically@4,5#.

In this paper we ask whether the localization caused
scarring on not-too-unstable~i.e., short! periodic orbits, and
by atypical regions such as the ‘‘bouncing ball’’@6–8#
modes is adequate to predict measures of localization
eigenstates of chaotic systems. Quantitative numerical c
firmation of scar theory@4,5# has been limited to discrete
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time maps, and it would be desirable to study scarring qu
titatively in the context of more realistic and experimenta
realizable systems, such as the stadium~Bunimovich! bil-
liard. In what follows we present a systematic study of eige
state localization in the stadium billiard~see Ref.@9# for
some other recent analyses of this system!. In Sec. II, we first
present the numerical method used to find the eigensta
Then, in Sec. III, we study the localization properties of i
dividual eigenstates, followed by an investigation in Sec.
of the localization properties of the local density of stat
We find evidence of scarring as a ubiquitous phenomenon
all the energy ranges considered. We examine quantita
predictions of scarring strengths based on the classical s
ture around the unstable periodic orbits@4#. However, scar
theory is not sufficient to explain all the observed localiz
tion. Symmetry effects, including the imprints of both tim
reversal and parity symmetries, are ultimately found to do
nate the excess wave function localization in the stadium

II. METHOD

We study eigenstates of the time-independent Schro¨dinger
equation in an infinite two-dimensional potential well havin
the shape of a stadium, taken here to consist of a squar
side 2 with semicircular endcaps of radius 1. We use
plane wave method@10# to find states of even parity with
respect to reflection about each of the two symmetry axe
the stadium. Since the eigenvalues are not knowna priori,
we search for them using the ‘‘tension’’ method: at ea
energyE we solve the linear system for the coefficients
the plane waves by singular-value decomposition, and t
©2001 The American Physical Society14-1
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compute the integral ofucu2 along the boundary. IfE is an
eigenvalue the integral should vanish, to within numeri
precision. In practice one finds sharp minima in the tens
as a function ofk5AE, which are identified with the eigen
values. Using about eight points per wavelength along
boundary, we could reliably locate all eigenstates up to ab
k5300. Thus, we did not need the improvements to
plane-wave method developed by Li and Hu@11# and
Vergini and Saraceno@12#, although the methods describe
in these papers would be required to go to still higher val
of k.

Lists of eigenstates of the even-even symmetry clas
the three energy ranges ofk520 to 30,k5100 to 150, and
k5200 to 225 were generated according to the method
lined above. Some examples are given in Fig. 1 of eig
functionsCn(x,y) in coordinate space.

Surface wave functions

Classically, one typically uses the boundary of the billia
as a Poincare´ surface of section. The variables parametrizi
the surface areq, the arclength along the boundary, and
conjugate momentump, which is the component of momen
tum parallel to the wall~both positive in the clockwise
sense!. q is taken modulo the lengthL[412p of the perim-
eter, whilep is limited by energy considerations to2k<p

FIG. 1. Representative eigenfunctions of the stadium billiard
coordinate space~left! with x axis running from 0 to 4 andy axis
running from 21 to 1, and in Husimi phase space~right! with
distanceq along the perimeter~horizontal axis! running clockwise
from 0 ~corresponding to the center of the upper straight segm!
to 412p and tangential momentum~vertical axis! running from
2k to k, wherek is the wave number of the eigenfunction. In th
coordinate space plots, the gray level representsucu2. In the Husimi
phase-space plots, white is high intensity and black low intens
~a! k524.680,~b! k5100.787, and~c! k5105.608, chosen to illus
trate scarring along the bowtie and diamond orbits~cf. Table II!.
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<k. Then the classical billiard dynamics is reduced to a n
linear one-bounce map, (q8,p8)5M cl(q,p).

A natural way of reducing the quantum problem from tw
to one dimension is to characterize the Dirichlet eigenfu
tions Cn(x,y), which are defined on the interior of the st
dium, by their normal derivativesfn(q) on the boundary:

^qun&[fn~q!}n̂•“Cn~x,y!. ~1!

We will study the properties of thesesurface wave functions.
The wave functions are normalized according to the conv
tion

E E dxdyuCn~x,y!u251, ~2!

which is equivalent@13# to the following condition on the
surface wave functions:

1

2k2E dq@ n̂~q!•r ~q!#ufn~q!u251, ~3!

where n̂(q) is the unit normal at the positionq along the
boundary, andr (q) is the displacement vector from the ce
ter of the stadium to the positionq.

The Husimi representation of a surface wave functionun&
is given by its projectionu^q0 ,p0un&u2 onto test state Gaus
sians of the form

^quq0 ,p0&5
1

s1/2p1/4
expF2

~q2q0!2

2s2
1 ip0~q2q0!G .

~4!

The test Gaussian is centered at the point (q0 ,p0) in the
boundary phase space. The parameters controls the aspec
ratio of the Gaussian: its width in position iss/A2 while its
momentum width is 1/(sA2). To maintain a given aspec
ratio of the Gaussian in phase space,s must scale ask21/2.
Here, we chooses5@(21p)/k#1/2, which makes the aspec
ratio unity in units where the full phase space on the billia
boundary is taken to be a square. Note that the wave fu
tions are real in coordinate space but complex in ph
space. Some example Husimi plots are given in Fig. 1.

III. IPR STATISTICS FOR INDIVIDUAL EIGENSTATES

We start by investigating the localization properties
individual eigenstates. As a measure of the degree of lo
ization of the eigenstates in phase space, we use the m
squared value of the intensity, also known as the inve
participation ratio~IPR!

In5

~1/J!(
j 51

J

u^qj ,pj un&u4

F (1/J)(
j 51

J

u^qj ,pj un&u2G 2 . ~5!

Hereqj andpj range over the entire phase space asj varies
on a sufficiently fine grid; the finenessJ must scale at leas
linearly with the wave vectork. The range of momentapj
covered is from2k to 1k for a wave function with energy

n

t
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k2; outside this classically allowed region there is almost
wave function amplitude. The IPRIn measures how much
fluctuation across phase space there is in thenth eigenfunc-
tion. If u^qj ,pj un&u2 were completely uniform over phas
space,In51. On the other hand, if all the intensity we
concentrated entirely at one pointj and was zero elsewhere
In would reach its maximal valueJ. @Of course, the uncer
tainty principle preventsIn from ever becoming greater tha
the size of phase space in units of a Planck cell, i
O(kL/2p).# Random-matrix theory~RMT! predicts a Porter-
Thomas distribution of wave function intensities, yieldin
In52 ~for complex wave functions!, already larger than the
naive classical expectation of 1.

A subtle point is that the wave function intensi
u^qj ,pj un&u2, even when averaged over wave functionsun&,
is not uniform over the boundary phase space, being ins
a non-trivial function ofpj . The mean wave function inten
sity can be determined from classical phase space argum
similar to those used in the derivation of Weyl’s law. It d
pends onp for two reasons:~1! normal derivatives introduce
a contribution ofp'5kA12(p/k)2 multiplying the coeffi-
cients of the plane waves@since the coefficients are square
the resulting factor in the mean intensity isk2

„12(p/k)2
…],

and~2! there is a geometrical factor coming from the proje
tion from the circlek'

2 1p25k2 onto the boundary of the
stadium. Because the plane waves are evenly distrib
around the circle, there are more nearp5k than nearp50;
the resulting geometrical factor is@12(p/k)2#21/2. To-
gether, Eqs.~1! and ~2! give

^u^q,pun&u2&n;A12~p/k!2. ~6!

Therefore, even in the absence of quantum fluctuations, if
intensities for a wave functionun& were given simply by the
mean valueu^qj ,pj un&u25A12(pj /k)2 as in Eq. ~6!, we
would obtain an IPRIn of

^12~p/k!2&/^A12~p/k!2&25
32

3p2 '1.080 76, ~7!

independent ofk. The averageŝ•••& here are of course
taken over the classically allowed range ofp: 2k,p,k. If
the intensity fluctuations around the smooth va
A12(p/k)2 were instead given by a Porter-Thomas distrib
tion, we would obtainIn51.083252.16 ~since the smooth
behavior and the Porter-Thomas fluctuations are indepen
of one another, the IPR contributions simply multiply!.

We checked the mean wave-function intensity for t
computed even-even states in the interval fromk5100 to
110. It agrees well with Eq.~6!, except atp50 around the
centers of the straight segments and the centers of the
caps, where sharp peaks are seen. The peaks occur be
only even-even states have been included in the anal
since the odd states must vanish at the symmetry points
even-even states compensate by having double the ave
intensity there. Apart from this, the agreement of the co
puted mean intensity with Eq.~6! indicates that we have
included enough eigenfunctions in our analysis for each
ergy range.
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The average IPRs for the first 100 states in each ene
regime are summarized in Table I.

The IPRs cluster around 3, with some much larger. T
mean IPR is 3.67, 3.60, and 3.08 in the low-, medium-, a
high-energy ranges, respectively, but with large standard
viations. Visual examination of the Husimi plots for stat
with the largest IPRs reveals that they correspond
bouncing-ball states. Since this phenomenon is well und
stood~and is associated with marginally stable periodic
bits!, we remove this effect by eliminating the bouncing-b
states from the average@see column~e! of Table I#.

The remaining states avoid the bouncing-ball regio
causing their IPR to be increased by an amount that can
estimated. Atk'20, the bouncing-ball region occupies abo
13% of phase space. Assuming the non-bouncing-ball st
to vanish identically in that region, the random-matrix theo
prediction for the average IPR without the bouncing-b
states becomes 2.1631.1352.44. The size of the bouncing
ball region in phase space is energy-dependent~and must of
course go to zero in thek→` limit, in order to satisfy the
Shnirelman quantum ergodicity condition!. As found by
Tanner@7#, the number of bouncing-ball states behaves
ymptotically asNBB(E)50.36E3/4 and thus the density o
bouncing-ball states, which is proportional to the area oc
pied by them in phase space, scales asE21/4 or k21/2. This
scaling law, as well as the numerical prefactor, are in agr
ment with our numerical results.~We note that Ba¨cker et al.
@6# find the same scaling law but a somewhat smaller p
actor when counting the bouncing-ball states. As explain
in Ref. @6# part of the difference may be explained by the fa
that Bäcker et al. do not count some states that live near t
boundary of the bouncing-ball region. We are being cons
vative by eliminating all such states from our analysis; o
erwise the observed discrepancy between calculated I
and RMT predictions would be even larger.! The adjusted
RMT predictions are shown in column~d! of Table I.

As seen in Table I, the average IPRs with bouncing-b
states removed are still well above the random-matrix p
diction in each energy range. The statistical uncertainty
the average IPR is about 1/A100'0.1 of the standard devia

TABLE I. Averages of the inverse participation ratios for th
first 100 states in the three energy ranges starting atk520, 100, and
200. Columns:~a! thek value at the beginning of the range;~b! the
actual IPR;~c! the estimated fraction of phase space occupied
the bouncing-ball~BB! states in this range ofk; ~d! the predicted
IPR when the bouncing-ball region is excluded;~e! the average
actual IPR after the bouncing-ball states are omitted. Standard
viations are shown in parentheses. The large remaining discrep
between~d! and~e! is mostly due to symmetry effects, as explain
in the text.

~a! ~b! ~c! ~d! ~e!

kmin IPR BB fraction IPR without BB IPR without
numerical of phase space RMT prediction BB numeric

20 3.67~3.53! 13% 2.44 2.71~0.62!
100 3.60~3.33! 5.8% 2.29 2.70~0.65!
200 3.08~1.98! 4.1% 2.25 2.82~0.80!
4-3
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tion, or roughly 0.1, which is comparable to the differenc
in average IPR between different energy ranges. We do
see any trend toward the RMT predictions ask increases by
a factor of 10.

Thus, we have uncovered systematic evidence of local
tion of eigenfunctions in the stadium billiard beyond wh
would be predicted on the basis of random-matrix theo
What is responsible for it? The next highest IPRs, after
bouncing-ball states, are for eigenfunctions visibly scar
along the periodic orbit that bounces horizontally betwe
the centers of the endcaps. Thus, one might hypothesize
scarring along this and other periodic orbits is partly resp
sible for the excess localization. In the next section, ho
ever, we shall introduce a method that allows the exc
localization to be identified with specific classical structu
in phase space, and techniques to predict the amount o
calization theoretically. We shall find that quantum symm
try effects cause most of the excess localization, while
secondary effect consists of combined scarring contributi
from all of the short unstable periodic orbits.

IV. SPECTRAL LOCALIZATION

A. Introduction

The IPRs of individual eigenstates establish that ther
indeed localization compared with the predictions
random-matrix theory. However, it does not permit the loc
ization to be identified with specific structures in classi
phase space because the IPR is an aggregate over all of
space. But it is also possible to ask a complementary q
tion, namely, how ergodic are the eigenstates at a given p
in phase space as one varies the energy? To answer
question, we turn to thelocal IPR—a tool that provides a
picture of the regions of phase space that are prone to in
sity enhancement or depletion as one sweeps through an
semble of eigenstates.

1. Definition

The local IPR~LIPR! L is the mean squared eigensta
intensity at point (q,p), averaged over a set of eigenstat
@14#:

L~q,p!5

1

N (
n51

N

u^q,pun&u4

S 1

N (
n51

N

u^q,pun&u2D 2 , ~8!

whereN is the number of eigenstates being summed ov
Typically the sum is taken over eigenstates in a small ene
range around some central value ofk. The Gaussian wave
packetsuq,p& are adjusted to maintain constant aspect ra
in phase space ask changes@see discussion following Eq
~4!#; this keeps the classical dynamics fixed as the ene
increases. The denominator in Eq.~8! depends analytically
on p as in Eq.~6!. Several LIPR pictures are shown in Fig.
06621
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2. Intuitive description

The LIPR at the point (q,p) is a statistical property of the
set of ‘random’ variables$^q,pun&:n51•••N%. The second
moment of this quantity@which appears in the denominato
of Eq. ~8!# is a smooth function ofq andp, as was shown in
Sec. III. The lowest nontrivial moment is the fourth mome
which appears in the numerator of Eq.~8!. The LIPR, then,
measures the nonuniformity of the local density of states
~fixed! position in phase space.

We expect the LIPRL(q,p) to be a sensitive indicator o
the presence of scarring, because a wave packet centere

FIG. 2. LIPR @see Eq.~8!# in phase space as a function ofq
running horizontally from 0 to 412p and p/k running vertically
from 21 to 1. The test-state widths is chosen so that the tes
Gaussians have circular cross-sections when the figures are pl
with a square aspect ratio. Darker shading indicates higher va
~a! k550 to 60,~b! k5100 to 150, and~c! k5200 to 225.
4-4
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a periodic orbit has a local density of states that oscilla
with energy @2#. Eigenstates in the peak of the oscillatio
will, on average, have enhanced overlaps with the test s
while eigenstates in the trough will have suppressed o
laps. This nonuniformity will cause the LIPR to have pea
near periodic orbits.

There is a useful interpretation of the LIPR—it is propo
tional to the long-time average of the probability that t
wave packetuq,p&, evolved in time, will return to its origina
location. A derivation and discussion of this interpretati
are presented in Sec. IV E below.

Since the stadium is strongly chaotic, classical trajecto
explore all of phase space~except for a set of measure zero!.
Therefore the classical return probability for long times
uniform, and the resulting naive classical prediction is t
L51. This is indeed too naive.

Instead, the correct ‘null hypothesis’ for a chaotic syst
is that its eigenfunctions are random superpositions of pl
waves@1#. Under this maximally random assumption, proje
tions of wave functions on test states should follow ax2

distribution with one degree of freedom~if the eigenfunc-
tions and test functions are real! or with two degrees of free
dom ~if they are complex!. The corresponding predicte
LIPRs areL53 or 2, respectively—already different from
the naive classical prediction.

B. Introduction to pictures

In Fig. 2 we present the LIPR computed for even-ev
eigenstates in the wave number rangesk550 to 60, 100 to
150, and 200 to 225. They display interesting and beau
localization effects.

The horizontal axis of each picture isq, the position along
the boundary, which runs from 0 toL. q50 corresponds to
the midpoint of one of the straight walls. The vertical axis
the component of momentum parallel to the boundaryp/k,
which runs from21 to 1. The eightfold symmetry of thes
plots results from the two spatial reflection operations p
time-reversal symmetry. The LIPRs consistently show a v
large enhancement in the bouncing-ball region, explaina
by the bouncing-ball and near-bouncing-ball states prese
the energy ranges considered. But in addition, there is lo
ization in many other regions of phase space. There are
prominent straight lines of enhanced LIPR running along
lines of symmetry, and filamentary streaks running acr
other parts of phase space. There are also isolated spo
which the LIPR is unusually large.

Note that, although the details vary somewhat, the m
localization features appear in the same positions in e
energy range. This lack of\ dependence suggests that t
lines, streaks, and bright spots are all associated with s
classical phenomena. Our main goal is to give a quantita
explanation for all of these effects. We would also like
understand the relative contributions of each semiclass
effect to the total average IPR enhancement found in Sec
above.

C. Symmetry lines

What is the explanation for the streaks in the LIPR pl
of Fig. 2? The most prominent streaks are shown schem
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cally in Fig. 3. The streak labeled~1! in Fig. 3 corresponds to
trajectories emerging from the center of the endcap. T
streak labeled~2! corresponds to a family of orbits emergin
from the center of the straight segment. Streak~3!, which
starts at small parallel momentum at the edge of
bouncing-ball region and extends to large momentum at
center of the endcap, corresponds to orbits that have a v
cal segment in the endcap region. The box and the bowtie
the two most prominent periodic orbits in this family. Th
streak labeled~4! starts at small momentum at the center
the straight segment, curves up to larger momentum,
finally comes back down to zero momentum at the cente
the endcap. It corresponds to orbits that pass through
center of the stadium. The most prominent periodic orbit
this family is the Z orbit. Finally, there is the horizontal lin
~5! going across the plot at zero momentum, correspond
to normal incidence on the billiard boundary. All of thes
families can be understood by considering time reversal
parity symmetry effects in combination with dynamics,
we will now see.

1. Simple explanation

The intuitive reason for the symmetry lines is that t
system, having time-reversal symmetry, has real eigenfu
tions. However, the Gaussian test states@Eq. ~4!# are intrin-
sically complex. Therefore the overlap^q,pun& has both real
and imaginary parts that, for most choices ofq andp, are not
trivially related to one another. Therefore the typical co
puted LIPR for the system is 2, characteristic of comp
eigenfunctions. But in a sense the ‘‘correct’’ valueL53
~characteristic of real eigenfunctions! is obscured by a non
ideal choice of test states whose properties do not ma
those of the eigenstates.

However, due to the symmetry of the system, there
certain values ofq and p for which the real and imaginary
parts of ^q,pun& are not random and independent. For e
ample, whenp50 ~normal incidence to the wall!, the test
states and their projectionŝq,p50un& on the eigenstates
become pure real and therefore nearp50 the LIPR increases

FIG. 3. Principal symmetry-related structures in phase spac
the local inverse-participation ratio plotted in Fig. 2 and the aver
return probability plotted in Fig. 7. All symmetry lines are depict
schematically, labeled in the order in which they are described
the text.
4-5
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to 3. @This explains the symmetry line labeled~5! in Fig. 3.#
Similarly, the eigenfunctions are symmetric about the cen
of the straight walls, and thereforêq50,pun& is pure real
and again the LIPR increases to 3.~Similarly for the centers
of the endcaps.! This simple argument explains the straig
symmetry lines~1!, ~2!, and ~5! that appear in the LIPR
pictures. A rigorous derivation of their heights and widt
will be given in the next section.

It is interesting to note that the same LIPR enhanceme
would be present if we had used eigenstates of other s
metry classes, or put eigenstates of all symmetry classe
gether. For example, for odd-odd eigenstates, the eigenf
tions are antisymmetric about the centers of the stra
walls, and thereforêq50,pun& is pure imaginary, again giv
ing a x2 distribution with one degree of freedom, and t
enhancementL53.

A natural approach to desymmetrization would be to sy
metrize the test wave packets with respect to time reve
symmetry, by taking their real or imaginary parts. We fin
however, that such a simple procedure fails to eliminate
symmetry effects on the LIPR~and thus, also on the IPR!.

2. Derivation

In this section we show how to compute the enhancem
of the LIPR that appears near the symmetry lines of
system. We do this in order to verify the conclusions of t
preceding simple arguments, and also to deduce impor
details such as the profiles and widths of the symmetry lin

The derivation relies on the fact that the eigenfunctio
are chosen to be real~in a coordinate basis!, which can be
done as a consequence of time-reversal symmetry. We
note time-reversal withT, an antiunitary operator. On th
surface of section,Tuq,p&5uq,2p&.

Furthermore, the eigenfunctions are symmetric or a
symmetric with respect to the reflectionsx→2x and y→
2y, which we will denote by the unitary operatorsRx and
Ry respectively. For simplicity in the following derivatio
we will consider the simpler case of a single reflection sy
metry R aboutq50.

It is not correct to model the eigenfunctions as uncor
lated Gaussian random variables, because their reflec
symmetry correlates their values at different points. Ho
ever, we can generate random wave functionsun,6& with
positive (1) or negative (2) symmetry by taking com-
pletely random real wave functionsun& ~with no symmetry!
and projecting them onto the correct symmetry subspace

un,6&5
1

A2
~ un&6Run&). ~9!

To substitute into Eq.~8!, we will need to compute
^q,pun,6&. This quantity is complex, so we decompose
into two real random variablesm6 andn6 as

1

A2
@^fq,pun&6^fq,puRun&#[m61 in6 . ~10!
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If m6 andn6 had the same variances and were uncorrela
the LIPR would uniformly equal 2, like that of any Gaussia
random process with two degrees of freedom. This null
sult would hold even if the variance depended onp and q,
because the square of the variance appears both in the
merator and in the denominator of the definition of the LIP

However, in reality the symmetries cause the variance
the real and imaginary partsm6 andn6 to depend differently
on phase space location. The effective number of degree
freedom varies from two~when^m6

2 &5^n6
2 &) to one~when

^m6
2 &Þ0, ^n6

2 &50), and correspondingly the LIPR varie
from 2 to 3.

In terms of the three quantities^m6
2 &, ^n6

2 &, and^m6n6&,

^um61 in6u2&5^m6
2 &1^n6

2 &, ~11!

while ^um61 in6u4& can be expanded and then contract
pairwise, giving

^um61 in6u4&52~^m6
2 &1^n6

2 &!21~^m6
2 &2^n6

2 &!2

14^m6n6&2. ~12!

The problem has been reduced to the computation of
required variances and correlations in Eq.~12!.

Using ^q,pun&* 5^q,2pun& andRuq,p&5u2q,2p&, we
obtain

m65
1

2A2
@^q,pun&1^q,2pun&6^2q,2pun&6^2q,pun&#

n65
1

2iA2
@^q,pun&2^q,2pun&6^2q,2pun&

7^2q,pun&#. ~13!

Becauseun& represents not a wave function but rather t
projection of a wave function onto the surface of section,
closure relationship does not hold:(nun&^nuÞ1. But as ex-
plained above in Sec. IV A 1, it is still approximately tru
that

(
n

un&^nuq,p&' f ~p!uq,p&, ~14!

where f (p)5 f (2p);A12(p/k)2. It follows that

^m6
2 &5

1

8N (
n

@^q,pun&1^q,2pun&6^2q,2pun&

6^2q,pun&#@^nuq,p&1^nuq,2p&6^nu2q,2p&

6^nu2q,p&#,

5
f ~p!

2N
@^q,puq,p&1Rê q,puq,2p&

6Rê 2q,pu2q,p&6^q,pu2q,2p!#; ~15a!
4-6
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the last line follows from^q,2pu2q,p&5^q,pu2q,2p&,
which is real. The other correlations can be worked out si
larly; the results are

^n6
2 &5

f ~p!

2N
@^q,puq,p&2Rê q,puq,2p&7Rê q,pu2q,p&

6^q,pu2q,2p&# ~15b!

^m6n6&5
f ~p!

2N
@ Im^q,puq,2p&6Im^q,pu2q,p&#.

~15c!

3. Even and odd subsets vs whole set

At this point we must distinguish between two types
LIPR. First, one can evaluate the LIPR by averaging~in the
numerator and the denominator! over only the even states~as
done in this paper! or only the odd states. One then obtai

L~q,p;$un,6&%)521
u^q,puq,2p&6^q,pu2q,p&u2

~^q,puq,p&6^q,pu2q,2p&!2

521
u^q,puTuq,p&6^q,puRTuq,p&u2

~^q,puq,p&6^q,puRuq,p&!2
.

~16!

On the other hand, one can instead evaluate the LIPR
averaging over both the even and the odd states. In that c

L~q,p;$un,1&%ø$un,2&%)

521
u^q,puq,2p&u21u^q,pu2q,p&u2

^q,puq,p&u21^q,pu2q,2p&2

521
u^q,puTuq,p&u21u^q,puRTuq,p&u2

^q,puq,p&21^q,puRuq,p&2
. ~17!

The required matrix elements can be worked out from
~4!:

u^q,puq8,p8&u5 expF2
~q2q8!2

4s2
2

s2~p2p8!2

4 G .

~18!

The three LIPRs—Eq.~16! for even or odd symmetry an
Eq. ~17! for both symmetry classes put together—all can
shown to give results between 2 and 3. In fact, outside
region nearq5p50 the three results are identical; they a
predict bright symmetry lines nearq50 ~or near anyq as-
sociated with a parity symmetry! of the form

L~q,upu@1/s!521e22q2/s2
~19!

and bright symmetry lines nearp50 of the form

L~ uqu@s,p!521e22p2s2
. ~20!
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We note that the pointp5q50, near which the three LIPR
definitions given above do not agree, will always be on
short periodic orbit~e.g., the horizontal bounce orbit of th
stadium billiard!, and so the behavior there in any case ca
not be determined without taking dynamical scar effects i
account~see Sec. IV D 2!.

4. Curved symmetry lines

The curved streaks~3! and~4! in Fig. 3 also correspond to
classical structures related to the system’s symmetry. C
sider first the streak labeled~3! in Fig. 3. It corresponds to
trajectories with a vertical segment in the endcap region
the desymmetrized quarter stadium, these trajectories ar
cident normally on they50 horizontal boundary, and a
Gaussian test state with zero tangential momentum place
the point of normal incidence (q8,p50) would give rise to
an enhanced LIPRL53, as for the zero-momentum line~5!
above. Of course, this point of normal incidence exists o
on the boundary of thequarterbilliard. At other points along
the same orbit, including points that also live on the boun
ary of the full stadium, a Gaussian with momentum align
along the trajectory will be close to, but not exactly equal
a time iterate of this zero-momentum Gaussian living on
y50 boundary. The exact time iterate of this purely re
Gaussian will in general be a Gaussian centered on the o
periodic point (q,p) but with a ~possibly complex! width s
somewhat different from that used in our test state. Thus,
test Gaussian at (q,p) will have significant overlap with an
iterate of a purely real state at (q8,p50) and result in an
enhanced LIPR somewhere between 2 and 3. Very li
wave packet rotation or stretching occurs during the sh
vertical trip between they50 line and the endcap; it is fo
this reason that the streak~3! is so strong. Further iteration
of the dynamics will result in additional streaks of enhanc
IPR; these, however, will be much weaker due to the ad
tional stretching that makes a circular wave packet cente
at these distant points less closely related to the evolved
sion of the (q8,p50) real wave packet. All streaks in th
LIPR plots that have not been explicitly identified in Fig.
may be explained as further iterates of symmetry lines
have discussed explicitly. The rather strong streak~4!, asso-
ciated with trajectories going through the center of the s
dium, has a completely analogous explanation.

5. Quantitative contribution of the symmetry lines to the IPR

We can now estimate the contribution of the symme
lines to the predicted average IPR. There are 12 stro
roughly vertical streaks@including the curved streaks~3! and
~4!# in the regionpÞ0 and one horizontal streak atp50.
We assume temporarily the curved symmetry lines to hav
central height near 3 and width of orders just as for thex
50 symmetry line. Integrating the area under these stre
assuming Eqs.~19! and~20! gives a predicted IPR from sym
metry effects alone of 2.51~in the energy range fromk
5100 to 150). The enhancement of the LIPR in t
whispering-gallery region and in bright spots due to perio
orbits gives a contribution only of about 0.03, negligible
comparison to the symmetry effects. Since the bouncing-
4-7
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region, which covers about 6% of phase space, is exclu
from the above analysis, we should increase the predic
by 6% to 2.66 for the purpose of comparison with the n
merical value of 2.7060.07. In the energy range fromk
5200 to 225 the corresponding predicted IPR is 2.40,
2.51 corrected for the bouncing-ball region, whereas the
merical value is 2.8260.08. Thus, it seems that inclusion o
symmetry and bouncing-ball effects is sufficient to yield
quantitative understanding of much of the excess aver
IPR in Table I. Interestingly, scarring plays little role in th
excess average IPR, but a very important role in understa
ing the phase-space structure.

D. Dynamics

In this section we will consider the LIPR for a syste
with no time-reversal symmetry, where the wave functio
are complex instead of pure real, and the arguments of
IV C concerning symmetry lines do not apply. In such
system the LIPR plot would be far more uniform, and mo
of the remaining structure would consist of isolated regio
of enhanced LIPR, against a background ofL52 ~corre-
sponding to the statistics of the square of a complex Ga
ian variable!. The streaks would be all gone, including th
vertical parity-line streaks, which also depend on tim
reversal symmetry for their existence. Thus in this sect
we study the effect of dynamics alone on the LIPR. First
give a general theory for computing the LIPR classica
anywhere in phase space, and then we show an easier w
compute the LIPR in the neighborhood of a periodic orbit.
the process, we will also see how to treat the case of a p
odic orbit that happens to lie on a symmetry line in a tim
reversal invariant system.

1. Full dynamics treatment

First we show how to compute the enhancement of
LIPR due to the short-time dynamics of the system. Since
are considering the surface-of-section wave functions,
classical dynamics that is important is the classical Poinc´
map M cl . However, since the effects we are seeking
quantum mechanical, we need to start from the correspo
ing quantumPoincare´ map. For this we use the operat
M (k) that enters into the boundary integral method:

^quM ~k!uf&[ R dq8Kex~q,q8;k!^q8uf&, ~21!

where the kernel is@13#

Kex~q,q8;k![2
ik

2
H1

(1)
„kur ~q!2r ~q8!u…

3n̂~q!•@r ~q!2r ~q8!#, ~22!

r (q) is a point on the billiard wall at arclengthq, andn̂(q) is
the inward-pointing unit normal vector atq. DoesM (k) as
defined generate the correct quantum dynamics? In a s
that is a philosophical question since the Poincare´ map has
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no obvious exact quantum counterpart. However,M (k) sat-
isfies enough properties expected of a quantum Poincare´ map
that we shall use it:

~1! To within a semiclassical approximation it agrees w
the semiclassical Poincare´ map @13# ~which is easier to de-
fine @15#!.

~2! It is approximately unitary within a subspace who
dimension is given by the area of the Poincare´ section in
units of Planck’s constant, and exponentially small outside
that subspace.

~3! If a boundary functionun& corresponds to a wave
function that satisfies the boundary conditions at wave nu
berk5kn , thenun& is mapped onto itself under the action
M (k):

M ~kn!un&5un&. ~23!

Indeed, this is the boundary integral method criterion for
eigenstate.

The following derivation should be considered suggest
rather than rigorous. For example,M (k) is approximately
unitary but it has eigenvalues both inside and outside the
circle. This leads to difficulties analytically continuing it t
the region of interest.

Given properties 2 and 3 above, it is clear that one cru
way to find surface eigenstates of the system would be
apply M (k) repeatedly to an arbitrary initial stateuf& and
average the results:

un&} lim
e→01

(
j 50

`

@M ~kn!2e# j uf&5G~kn!uf&, ~24!

where

G~k![ lim
e→01

1

12M ~k!1e
~25!

is similar to a Green’s function. Since the component ofuf&
that projects ontoun& is unchanged by the action ofM (kn),
whereas the other components are multiplied by a comp
phase, the only component that is not averaged out by
above procedure is the projection onun&.

Wheneverk passes through an eigenvaluekn , one of the
eigenvalueseian(k) of M (k) passes along the unit circl
through 1 andG(k) has a singularity. The singular part ofG
can be written schematically as

1

p
Re G~k!5(

n

un&d~k2kn!^n&
udan~k!/dku

. ~26!

The denominator gives the velocity of rotation of thenth
eigenphase as it passes through 0. From Weyl’s law, one
obtain an expression for the sum of eigenphase veloc
~see, e.g.,@16#!:

(
n

dan /dk5kA, ~27!
4-8
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whereA is the billiard’s area. Here the sum is over all eige
values of the scattering matrix. Now the dimensionality
this matrix iskL/p, whereL is the perimeter of the billiard
~the total number of wavelengths along the perimeter
kL/2p, so there is a total ofkL/p modes that can live on th
perimeter when one includes sines and cosines!. Thus we can
find the average phase velocity:

~kL/p!^dan /dk&5kA, ~28!

whence,

^dan /dk&5pA/L. ~29!

For a chaotic system, Eq.~29! holds not only in an aver-
age sense but also holds approximately for individual eig
phases. Therefore we take the eigenphase velocity outsid
the summation, yielding the useful expression

A

L
ReG~k!'(

n
un&d~k2kn!^nu. ~30!

Note that the sum is over states of the full system, each w
its distinct eigenvaluekn .

It is a simple warm-up exercise to compute the deno
nator of the LIPR:

(
n

u^q,pun&u25(
n

^q,pun&^nuq,p&

5(
n

^q,pun&E dkd~k2kn!^nuq,p&

5
A

LE dk Rê q,puG~k!uq,p&

5
A

L
ReE dk@^q,puq,p&1^q,puM ~k!uq,p&

1^q,puM2~k!uq,p&1•••#. ~31!

Now note thatM (k) involves phases that vary rapidly wit
k; therefore only the first term in the brackets survives
integral overk. We are left with

(
n

u^q,pun&u2'
ADk

L
^q,puq,p&, ~32!

whereDk is the range ofk over which the averaging is done
To compute the fourth moment, we proceed as follow

(
n

u^q,pun&u45(
n

^q,pun&^nuq,p&^q,pun&^nuq,p&

5(
n,m

^q,pun&E dkd~k2kn!^nuq,p&

3^q,pum&E dk8d~k82km!^muq,p&dnm .

~33!
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Because of thed(k2kn) and d(k82km) factors, the Kro-
necker deltadnm may be replaced byCd(k2k8) whereC is
an undetermined constant with dimensions of momentu
Continuing, then, we have

(
n

u^q,pun&u45CS A

L D 2E dkdk8Rê q,puG~k!uq,p&

3Rê q,puG~k8!uq,p&d~k2k8! ~34!

5CS A

L D 2E dk@Rê q,puG~k!uq,p&#2 ~35!

5CS A

L D 2E dk(
j , j 8

Rê q,puM j~k!uq,p&Rê q,puM j 8~k!uq,p&

~36!

'CS A

L D 2E dk(
j

@Rê q,puM j~k!uq,p&#2 ~37!

'
C

2 S A

L D 2E dk(
j

u^q,puM j~k!uq,p&u2. ~38!

where in going to Eq.~37! we use the fact that forj Þ j 8, the
two phases in the integrand are approximately uncorrela
and the integral averages to zero. Equation~38! ~in obtaining
which we note that forj Þ0 the phase of̂q,puM j (k)uq,p& is
a rapidly changing function ofk, and so may be regarded a
random in the integration; thej 50 term is irrelevant in the
infinite sum! may be interpreted as expressing the prop
tionality between the LIPR and the mean quantum ret
probability, averaged overall times. As a result of the re
loading effect@4# this mean long-time return probability i
proportional to the sum of theshort-timerecurrences, which
may be cut off at the mixing time. The mixing time is de
fined as the time it takes for the classical dynamics to spr
a given \-sized cell throughout the entire phase space.
order of magnitude it is given by the one-bounce timeTB
times the logarithm of the number of Planck-sized cells
the classical surface-of-section phase space, i.e.,j mix
;Tmix /TB; ln(kL).

Thus,

(
n

u^q,pun&u4'
C8

2 S A

L D 2E dk (
j 52 j mix

j mix

u^q,puM j~k!uq,p&u2.

~39!

The constant of proportionality changes in going from E
~38! to Eq. ~39!, as is reflected in our change of notatio
from C to C8.

But at times shorter than the mixing time, the quantu
mapM j (k) can be approximated semiclassically in terms
the classical Poincare´ mapM cl

j ~which does not depend onk)
times a phase that varies rapidly withk:

^q,puM j~k!uq,p&'^q,puM cl
j uq,p&1/2exp~ ikl j !, ~40!

whereuq,p) represents a classical Gaussian probability d
tribution centered at (q,p) ~notationally distinguished from a
4-9
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quantum wave function by the round brackets!, M cl
j is the

classical Poincare´ map iteratedj times, andl j is the length
of the corresponding classical trajectory. (q,puM cl

j uq,p) is
the classical overlap of the original distribution with th
j-times iterated distribution:

~q,puM cl
j uq,p![E dq8dp8PM

cl
j (q,p)~q8,p8!Pq,p~q8,p8!.

~41!

So finally we have

(
n

u^q,pun&u4'
C8

2 S A

L D 2

Dk (
j 52 j mix

j mix

~q,puM cl
j uq,p!.

~42!

Combining Eq.~32! and Eq.~42! we obtain for the LIPR

L5

N(
n

u^q,pun&u4

S(n
u^q,pun&u2D 2

5
C8N

2Dk

(
j 52 j mix

j mix

~q,puM cl
j uq,p!

~q,puq,p!
,

~43!

where the projections in both the numerator and in the
nominator are classical. The constantC8 can now be fixed by
requiring that the LIPR, when evaluated far from any sh
periodic orbits~where scarring plays no role!, should give
the RMT value, which we callL(RMT). @As discussed
above,L(RMT)52 in a system with no time-reversal sym
metry; in the presence of time-reversal symmetry,L(RMT)
reaches the value of 3 on certain symmetry lines. The LI
contribution obtained from short-time dynamics must alwa
be multiplied by the appropriate factor given by symme
considerations;L(RMT) is inherently an effect arising from
Heisenberg-time behavior and so must be considered s
rately from short-time contributions to the LIPR.#

Away from short periodic orbits there will be no recu
rences, so only thej 50 term in the above sum contribute
Thus, we obtain the normalization constantC8
5(2Dk/N)L(RMT) and finally

L~q,p!5L~RMT!

(
j 52 j mix

j mix

~q,puM cl
j uq,p!

~q,puq,p!
. ~44!

2. Periodic orbits, linear theory

The dynamical description of the LIPR developed in t
previous section provides a method of computing the LI
classically, anywhere in phase space, by computing over
of classical Gaussian probability distributions with the
selves iterated under the classical Poincare´ map M cl . We
found that the LIPR is enhanced when the short-time ove
is large. This of course is most dramatically the case in
neighborhood of a periodic orbit. In this section we sho
how to compute the LIPR in the neighborhood of a perio
orbit whose stable and unstable manifolds may have a
trary orientation, using only the properties of that one orb
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Figure 2 confirms the omnipresence of scarring in
eigenstates of the stadium billiard, as we now argue. In
general theory of scarring, a wave packet launched on a
riodic orbit has a local density of states with a linear
short-time envelope~coming from dynamics linearized
around the orbit! that is an oscillating function of energy@4#.
The concentration of the local density of states in some
ergy regions and avoidance of others leads to an enha
LIPR in Eq.~8!. Thus the peaks in the LIPR plot in Fig. 2 a
the positions of short periodic orbits must be attributed
scarring, even though for the most part the scars are too w
to be visible in coordinate-space plots of the wave functio
such as in Fig. 1. The scars are there in the sense of nox2

variation of phase-space wave function intensity near the
riodic orbits, as one scans through the eigenstates of the
tem. For typical scarred wave functions, the scarring will n
be visible in coordinate space, even though the phase s
intensity is greatly enhanced at the periodic points, as
can see in the Husimi plots.

In Fig. 4, we see that the distribution of wave functio
intensities on a periodic orbit indeed differs from thex2

distribution that would be expected on the basis of rando
matrix theory. In Fig. 4~a! we show a histogram of wave
function intensities measured using a Gaussian centere
the bowtie orbit for all states lying betweenk5100 andk
5150. Because the bowtie orbit lies on a symmetry line,
random-matrix-theory prediction is ax2 distribution in one
degree of freedom~for the 94% of eigenstates that are n
bouncing-ball states!. In the presence of scarring, thex2 dis-
tribution must be modulated by the linear spectral envelo
corresponding to the periodic orbit, which can be obtained
the Fourier transform of the time-domain return amplitu
for a wave packet initially centered on the orbit. For t
bowtie orbit, the spectral envelope height varies from 0.4
2.3 with period in energy given by 2p/T, whereT52.6TB is
the period of the bowtie orbit. As a result of this modulatio
there are many more very small and very large intensitie
Fig. 4~a! than would be expected from the naive Porte
Thomas~RMT! picture. As plotted on a logarithmic scale
the effect is more pronounced for the large intensities,
also at low intensities we expect an enhancement by ab
20%, which indeed is what is indicated by the data bel
^I &/10. The amount of strong scarring observed is also qu
titatively consistent with the predicted scarring corrections
random-matrix theory: for instance, the number of wa
function intensities greater than ten times the mean is fo
to be 10 numerically, while the scar-corrected prediction
1363 and the uncorrected random-matrix prediction is o
363. These predictions were generated using a Monte C
simulation for peak heights chosen at random with the
propriate modulation.

At a generic point in phase space, not lying on a scar
on a symmetry line, we expect ax2 distribution in two de-
grees of freedom, and Fig. 4~b! shows the numerical distri
bution of wave function intensities at a generic point
phase space, in satisfactory agreement with the rand
matrix-theory prediction for intensities greater than;^I &/10
~without scarring corrections, since there is no scarring a
generic point in phase space, but with 6% of the intensi
4-10
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FIG. 4. Probability distribution of wave function intensitiesI n5u^q,pun&u2 for the 1746 energy levels betweenk5100 and 150.~a! For
(q,p) situated on the bowtie orbit. Histogram, numerical distribution of wave function intensities; dotted line, scar-corrected predi
random-matrix theory with one degree of freedom; solid line, random-matrix prediction, uncorrected for scarring. For purposes of
tion, the low-intensity part is shown in the figure on the left and the high-intensity tail on the right in a log-log plot.~b! Same as~a! but for
(q,p) at a generic point in phase space, and the dotted line is now the random-matrix theory prediction for two degrees of freedom~without
scar corrections, but adjusted for the 6% nearly vanishing intensities due to bouncing-ball states!.
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set to zero, namely, those corresponding to bouncing-
states!. The bouncing-ball states appear of course in the
merical data at intensitiesI ,^I &/10; the total area betwee
the data and the curve in this intensity region indeed tu
out to be 6%. Note the smaller number of very small a
very large intensities as compared to the scarring case,
4~a!. The two-degrees-of-freedom distribution also falls o
much faster at large intensities than the one-degree
freedom prediction appropriate for a symmetry line.

We now turn to the calculation of the heights of the sc
ring peaks in Fig. 2 based on a linear expansion around
riodic orbits. Consider the surface-of-section map
Birkhoff coordinates; we will be interested in the short-tim
linearized dynamics in the vicinity of a periodic orbit@2#.
The stable and unstable invariant manifolds, defined as
locus of points that approach the periodic orbit under infin
iteration of the mapping forward or backward in time, r
spectively, will in general have an arbitrary orientation. W
assume that we are far into the semiclassical regime, i.e.,
k is large enough so that the Gaussian wave packet is
contained in the phase-space region where the linear
equations of motion are valid.
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Due to the reloading effect mentioned in the preced
section~see also@4#! in which returning homoclinic orbits
contribute in phase, the mean return probability for lo
times at a given periodic orbit, and hence the LIPRL, which
is proportional to the long-time return probability, will b
equal toL~RMT! times the short-time enhancement facto

S[ (
j 52`

` E dqdpPj~q,p!P0~q,p!

5 (
j 52`

`

2A detA

det@A1~J2 j !TAJ2 j #
, ~45!

whereP0(q,p) is a classical Gaussian distribution center
on the periodic orbit andPj (q,p) is the same distribution
evolved byj bounces. Strictly speaking, the sum in Eq.~45!
should extend only over times short compared to the mix
time; however, this cutoff is irrelevant in the semiclassic
limit kL@1 in which we are working. To show the secon
equality, let x5(dq,dp) be the phase-space displaceme
relative to the periodic orbit andA be the quadratic form
defining the initial Gaussian centered on the orbit,
4-11
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P0~x!5Ce2xTAx, ~46!

with detA51. We defineJ to be the Jacobian ofM cl at the
periodic orbit; then

Pj~x!5C exp@2xT~J2 j !TAJ2 j x# ~47!

and the overlap is indeed

E dqdpPj~q,p!P0~q,p!52A detA

det@A1~J2 j !TAJ2 j #
~48!

~we see that using our normalization the overlap is unity
time j 50). Thus, the scar prediction of the LIPR pe
heights at the periodic orbits—which takes into account
local stable and unstable directions at the periodic orbit,
not only the stability exponent—isL ~RMT! multiplied by
the short-time factorS.

Using a canonical transformation we may easily see
for any orientation of the manifolds there is an infinite on
parameter family of ‘‘optimal’’ Gaussian test states, all
which display maximum possible scarring in accordan
with Eq. ~45!. Sapproaches unity for long or highly unstab
orbits.

We have calculatedS for the periodic orbits appearing i
Fig. 5, and compare these theoretical predictions with
actual peak heights in Fig. 6.

To avoid having to deal explicitly with symmetry effect
we use the properties of the reduced orbits in the fundam
tal domain—one quarter of the stadium. Thus the period
the most important orbits, as tabulated in Table II, ran
from 2TB to 5TB although their periods in the full stadium
may be longer. AsT increases beyondTH'10TB , many of
the short periodic orbits become incorporated into the stre
that dominate the IPR plots.

All quantities appearing in Fig. 6 are either predicted
actual values ofL(q,p)/2 at a periodic point (q,p). In other
words, we have divided out by the RMT predictio
L(RMT)52, which is relevant for all of phase space aw
from the symmetry lines. However, on the symmetry lin
the RMT expectation is 3 rather than 2~see Sec. IV C!, so
the theoretical values ofS have been multiplied by 3/2 fo
those periodic points that do lie on symmetry lines. In fa
most of the points do lie on one or another symmetry li
With the inclusion of symmetry corrections, reasona
agreement is obtained, as can be seen in the scatter plo
the predicted versus calculatedL/2 peak intensities, Fig. 6
as shown in Fig. 6~c!, the scatter is markedly worse when th
symmetry corrections are omitted.

In order to appreciate the significance of these results,
should discuss the factors contributing to the uncertainty
the measuredL/2 values plotted in Fig. 6. There are tw
issues: first, there may be a nonintegral number of osc
tions of the local density of states in the energy wind
considered. The size of this effect scales inversely with
number of scar oscillations in the energy window, and
only a few percent for the data presented in Fig. 6. A seco
larger, source of error arises from the finite number of eig
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values in the window. For random and independent fluct
tions, the uncertainty coming from this effect scales as
square root of the mean level spacing divided by the size
the window. This is why the windows fromk5100 to 150
and fromk5200 to 225 were chosen to be as large as p
sible. A Monte Carlo simulation was done of random wav
function intensities constrained by the ‘‘linear’’ spectral e
velope: it suggests that the statistical uncertainty in
LIPRs should range from 5% to 8%~depending on the sta
bility matrix J of the orbit in question! for periodic points on
symmetry lines, and should be slightly smaller for tho
points that are not on any symmetry line. This level of flu
tuation is roughly consistent with the dispersion in the sca
plots of Fig. 6, and does not alter the conclusion thatS to-

FIG. 5. Principal dynamics-related structures in phase spac
the inverse-participation ratio plotted in Fig. 2 and the average
turn probability plotted in Fig. 7. The labeling is according to Tab
II labeling of scars on the principal short periodic orbits visible
Fig. 7~e!, in an irreducible one-eighth region of phase space. T
other regions of phase space are obtained by symmetry. The
prominent scarred orbits areW, Z, D, B, X, andH.
4-12
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FIG. 6. Scatter plots of computed peak heights vs the linearized semiclassical predictionS and the brute-force semiclassical predictio
~a! Eigenfunctions ranging fromk5100 to 150, symmetry corrections included inS; ~b! k5200 to 225, symmetry corrections again includ
in S; ~c! k5100 to 150, but symmetry correctionsnot included inS. Without symmetry corrections the agreement is much worse.~d! k
5100 to 150 vs brute-force classical prediction without symmetry correction, and~e! with symmetry corrections included.
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gether with symmetry factors is a good prediction of t
peak heights. Thus, the symmetry lines emerge as esse
to a quantitative understanding of the calculated LIPRs
to scarring. A final consideration supporting the validity
our symmetry analysis is the pattern of peak heights for thF
orbit, on which periodic pointsF1 , F3, andF4 have a sym-
metry correction whileF2 andF5 do not; the predicted pea
heights for the points having symmetry corrections are ab
50% percent higher than for the others, and this predic
pattern is reproduced in the calculated heights.

The brute-force classical calculation, at times large co
pared toTB , goes beyondS to include the effects of nonlin
ear homoclinic recurrences, which add to the predicted p
height. For each periodic point, the returning probability
an initial Gaussian distribution centered at that point w
06621
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integrated up to a cutoff time of 5TB , which was chosen to
be large compared toTB but smaller than the mixing time
Tmix'7TB , after which the returning probability approach
a constant per unit time independent of position in ph
space. In the semiclassical limit, where strong, identifia
recurrences at times between the initial decay of the w
packet and the Heisenberg time can be neglected, the cl
cal simulation converges to the quantum factorS. The clas-
sical simulation reproduces, as it must, one feature of
quantum data: the peak heights it predicts agree for po
related by symmetry, namely,B1 andB2 , Z1 andZ2 , X1 and
X2 , A1 andA2 , W2 andW4 , H2 andH3 , T2 andT3, andF3
and F4. In predicting the quantum heights, however, t
brute-force classical calculation does no better thanS and
makes predictions that are systematically high~after includ-
4-13
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TABLE II. Principal short periodic orbits appearing in Figs. 2 and 7. The initial coordinateq is the
distance around the perimeter of the stadium measured clockwise from the center of the upper
segment; the initial momentump is positive in the clockwise sense. The lengths and periods are given fo
desymmetrized stadium, which is relevant to our calculations.

Label Description q p/k Length Period/TB

~desymmetrized! ~desymmetrized!

HB Horizontal bounce 2.5708 0 1 2.00
V V shaped 0 0.70711 2 2.41
D Diamond 2.5708 0.44721 2 2.24
B Bowtie 1.5236 0.5 2 2.60
Z Z shaped 0.5 20.44721 3 3.24
X Box 1.7854 0.70711 2 2.41
A Accordion 0 0.5491 3 3.30
W W-shaped 0 0.31623 4 4.16
H Hexagon 2.5708 -0.86603 3 2.50
T Triangle 0 0.83573 3 4.30
F Fish 2.5708 0.6478 5 5.40
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ing symmetry effects!. In order to investigate the energy d
pendence of the classically predicted peak heights, the c
sical simulation was run both atk5100 and atk5200, the
difference being in the size of the Gaussian as a fraction
the total phase space area. For almost all of the perio
orbits the results at the two energies agreed to within a
percent, which is of the same size as the discrepancy
tween the numerical quantum peak heights in the two ene
ranges. This tells us that isolated, identifiable nonlinear
currences beyond the initial decay of the wave packet a
from the periodic orbit are not that important for computi
the mean long-time return probability. Any such nonline
effects would be strongly dependent on the size in ph
space of the initial wave packet, i.e., on the wave numbek.

The classical calculation for the average return probab
can be performed anywhere in phase space, not only on
short periodic orbits considered in this section; see S
IV E 2 below. There we shall see that we obtain pictu
similar to Fig. 2, but with more diffuse peaks and the on
of mixing for T.Tmix .

E. Derivation as return probability

Finally, we explain the interpretation of the LIPR as t
infinite-time average return probability, as in Eq.~49! below
~where it is assumed that the energy window in the su
over n and n8 is large enough to cover the energy sca
present in the test stateua&). In order to clarify what is hap-
pening in the infinite-time limit, it is useful to look first a
finite times, and then let time tend to infinity. Thus we defi
the average return probability at timeT for a wave packet
uCa& to be @14#

Paa~T!5
1

2TE2T

T

dtu^Caue2 iHt uCa&u2

5
1

2TE2T

T

dtU(
n

^Caun&e2 iEnt^nuCa&U2

5
1

2T (
nn8

E
2T

T

dtu^Caun&u2u^Caun8&u2e2 i (En2En8)t
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sin„~En2En8!T…

~En2En8!T
^Caun&u2u^Caun8&u2. ~49!

In the limit asT tends to infinity,

sin„~En2En8!T…

~En2En8!T
→d~En2En8!

and ~in the case of a nondegenerate spectrum! we recover
Eq. ~8! up to an overall proportionality constant. The arb
trary stateuCa& living in the interior of the stadium may be
replaced by a Gaussianuq,p& living on the boundary if at the
same time the eigenstatesuCn& are replaced by their norma
derivatives on the boundary,un&. For T!TB we should have
Paa(T);1/T; for intermediate times we expect classical b
havior as long asT,Tmix . The classical behavior will be
computed directly below where, based on the time nee
for a simulated classical ensemble to begin to spread ev
throughout phase space, we findTmix'7TB at k5100; that it
is so large may be attributed to intermittency due
bouncing-ball orbits. Finally forT@TH , that is beyond the
Heisenberg time where individual eigenstates are reso
@here, TH51/DE51/(2kDk)51/(2310030.05)50.1
510TB at k5100], we should find thatPaa(T) tends to the
LIPR plot as shown in Fig. 2.

1. Finite-time return probability

The results for the time-dependent average return pr
ability P(q,p),(q,p)(T) are given in Fig. 7, for the energy win
dow atk5100. We are unable to study numerically the lim
T!TB because of the finite number of eigenfunctions
cluded in the sum in Eq.~49!. At T5TB , however, we see
large amplitudes coming from the bouncing-ball a
whispering-gallery regions of phase space, both of which
short-time classical effects. AtT52TB the horizontal-
bounce orbit appears. ByT53TB several discrete peaks ap
pear, and more of them are present atT54TB . These corre-
4-14
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spond to short periodic orbits of the classical dynamics in
desymmetrized quarter-stadium billiard. AsT becomes as
large as 5TB and then 10TB the finite-time average retur
probability indeed approaches the infinite-time LIPR. T
nonuniform structure of the infinite-time return probability
a purely quantum mechanical effect, because accordin
classical mechanics the average return probability must
come uniform forT@Tmix .

Let us work with the data atT54TB , where the strong
peaks are all present and readily distinguishable from
background@see Fig. 7~d!#. We identify these peaks with th
short periodic orbits in Table II and Fig. 5.

2. Classical finite-time return probability

The persistence to long times of short-time classical
formation is a remarkable property of the quantum mech
ics. Classically, we would expect the recurrences to
washed out at times large compared to the mixing time.
deed, we have computed a classical analog to the ti
dependent average return probability from Eq.~44!. As
shown in Fig. 8, byT510TB all of the periodic orbits seen in
the quantum calculation are present, although the peaks
more diffuse classically, but by 20TB the classical picture is
beginning to be uniformly distributed throughout pha
space, losing memory of the short-time behavior. Quan

FIG. 7. Quantum-mechanical average-return probabilityPaa(T)
as defined in Eq.~49!, near k5100; q and p as before.~a! T
5TB , ~b! T52TB , ~c! T53TB , ~d! T54TB , ~e! T55TB , and~f!
T510TB . Note the emergence of periodic orbits atT52TB to T
53TB . For T510TB the figure is already beginning to resemb
the LIPR plotted in Fig. 2~b!.
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mechanically, of course, the peaks do not become was
out at long times and instead persist in the infinite-time lim
Fig. 2.

V. CONCLUSION

The advantage of the approach implemented in Sec. IV
that all of the scars can be observed simultaneously in
plot of inverse participation ratio as a function of phas
space location. Although scars are associated with the c
sical structure of unstable periodic orbits, the persistenc
long times of an excess in the average return probability

FIG. 8. Results of a classical calculation of the return proba
ity vs time,q running horizontally from 0 to 412p andp vertically
from 21 to 1. Initial Gaussians were chosen withs250.05, corre-
sponding to a spread in position space of 0.2 out of 412p, or 2%
of the perimeter. All of the major periodic orbits are present here
short-time recurrences.~a! T55TB , ~b! T510TB , ~c! T520TB .
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purely quantum mechanical phenomenon. The brightne
of the peaks in the LIPR plot can be predicted semicla
cally with some success~to an accuracy of 10– 15 %), th
size of the deviations being roughly consistent with expec
statistical fluctuations. More precise comparison with
scar theory predictions would require producing a grea
increased set of eigenstates: this could be done by goin
higher energies or~with far less computational expense! by
using an ensemble of chaotic systems with a given unst
orbit kept fixed@4#. The predictions of brightnesses based
exact classical phase-space evolution at the end of Sec
were no more successful than those based on linearized
havior around the periodic orbit.

Most of the extra localization of individual eigenfunction
in Husimi phase space, over and above Gaussian ran
fluctuations, may be satisfactorily accounted for by quant
symmetry effects. Scarring is also seen to be present b
on an analysis of the spectra of wave packets located
short periodic orbits. Symmetry effects on the overall me
IPR scale asO(A\) @i.e.,O(A1/k)], while the effect of scar-
ring on the overall mean IPR scales asO(\) @i.e., O(1/k)].
The reason, for the symmetry effects, is that the widths
position and momentum of the test-state Gaussian scal
s;A\, setting the width of the symmetry lines@Eqs. ~19!
s
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and ~20!#, while the length of the symmetry-enhanced lin
is \ independent. Thus, the total fraction of phase sp
covered by the symmetry lines scales asA\. The scar effect,
on the other hand, is significant for those phase-space Ga
ian wave packets that have large intensity on the perio
orbit @17#, and the fraction of such Gaussians goes as the
of the Gaussian; i.e., asA\3A\5\. We note that although
the size of both these effects on the overall wave funct
IPR is expected to go to zero in the semiclassical limit~be-
cause periodic orbits and symmetry lines both affec
smaller and small fraction of phase space surrounding th
in the\→0 limit!, the local IPR either on a symmetry line o
on a periodic orbit is\ independent. Thus, as measured u
ing the local IPR, deviations from naive RMT prediction
persist to arbitrarily high energies and do not decay in
semiclassical limit. As for other possible kinds of eigenfun
tion localization, not associated with the short periodic orb
of the system or with symmetry lines, their explanation
mains an open question.
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